
University of Luxembourg

Faculty of Science, Technology and Communication

A Graph–Oriented Generic Data Model for
Game-based Student Response Systems

Thesis Submitted in Partial Fulfillment of the Requirements for the

Degree of Master in Information and Computer Sciences

Author

Dren Gashi

Student Number

0130732528

Date

August 2018

Supervisor

Prof. Dr. Steffen Rothkugel

Reviewer

Prof. Dr. Denis Zampunieris

Advisor

Christian Grévisse

Dedicated to my son, Nuh.

i

ii

Abstract

Game-based student response systems (GSRSs) have a great potential to moti-

vate and engage students in classrooms. Using game-mechanics such as points or

leaderboards as the main building block, quizzes feel like actual games. However,

current GSRSs share a main limitation. The students’ answers must exactly match

a solution, which is restricted in the way that there could be different semanti-

cally equivalent elements where each belongs to a valid solution. In this thesis,

we present a graph-oriented generic data model that overcomes this limitation.

By solving the well-known open graph isomorphism problem, the evaluation of an

activity is able to accept any answer as long as it is semantically equivalent to

the solution, although not specified by the teacher in beforehand. Furthermore,

teachers can provide multiple graph-based solutions, thus offering more flexible

questions. Inspired by the idea of teaching by templates, our approach supports

graph-based templates that students can use as a starting point. This enables

teachers to ask more complex questions that would otherwise take too much time

in traditional game-sessions. Teachers can furthermore define patterns, which are

sub-graphs of a solution graph, that can be used as an intermediate feedback

system to show the progress on a solution. Additionally, we show how to create

a bidirectional mapping between activities and learning materials so that students

can access any learning material related to an activity within a game-session, and

play associated activities from learning resources at home in order to foster a

continuous learning experience. As a proof of concept, we have created three ac-

tivities based on chemistry, computer science and chemical biology to demonstrate

the applicability of our approach in different domains. Additionally, we provide a

framework we developed to third-party developers for creating activities based on

our data model. The evaluation of an activity is performed by the framework and

is hence leveraged from concrete implementations.

Keywords: Graph-oriented Game-based Student Response Systems, Student Response Sys-

tems, Gamification, Student Engagement, Graph Isomorphism, Integration of Learning Materials.

iii

iv

Declaration of Honor

I hereby declare on my honor that I am the sole author of the present thesis. I

have conducted all work connected with the thesis on my own.

I only used those resources that are referenced in the work. All formulations

and concepts adopted literally or in their essential content from printed, unprinted

or Internet sources have been cited according to the rules for academic work and

identified by means of footnotes or other precise indications of source.

This thesis has not been presented to any other examination authority. The

work is submitted in printed and electronic form.

Luxembourg, August 2018

Dren Gashi

v

vi

Acknowledgments

I would like to dedicate this page to several people that supported me during

my work and made this thesis possible.

I want to express my deep gratitude to my academic supervisor Prof. Dr.

Steffen Rothkugel for his excellent support and guidance throughout the past

months of my work. I am grateful for the constructive criticism which always

caused me to rethink and helped me to improve. He always had a door open for

me, and I want to thank him for all the rewarding discussions.

I would like to thank my advisor Christian Grévisse who has always taken the

time to discuss my progress and helped me to come up with new ideas. I have

considered him as a mentor, and I have learned a lot from him. I want to thank

him for the excellent thesis template and all our interesting discussions, that even

went beyond computer science.

I would like to acknowledge Prof. Dr. Denis Zampunieris for accepting to

review my work. His excellent programming lectures in the Bachelor’s degree

were my inspirations for creating the Algorithmic Block activity.

I want to express my gratitude towards Prof. Dr. Pierre Kelsen and Dr. Jean

Botev – the experts in graph theory – who have helped me resolving issues related

to graphs. I learned a lot from our valuable discussions.

I would also like to thank Nicolas Mayer, Joe Mayer and Laurent Hentges for

supporting me throughout my work in our shared office. I enjoyed our discussions

and the rewarding feedbacks helped me to improve.

Furthermore, I would like to thank the directors of the Lycée Technique d’Esch

/ Alzette (LTE) for offering me the opportunity to start working as a teacher in

computer science right after my studies. I also want to thank my former teachers

Dr. Serge Linckels and Roger Kries who initiated this opportunity in the first

place. Although they all were not directly involved in my work, they influenced

the quality of my work and motivated me a lot with such an opportunity.

Last but by no means least, I want to express my deep gratitude towards my

family who always believed in me and encouraged me. Although my seven month

old son Nuh has not intentionally encouraged me, he surely did – indirectly – with

all our lovely moments. To him, I dedicate this thesis.

vii

viii

CONTENTS

Contents

Abstract iii

Contents x

List of Figures xv

1 Introduction 1

2 Background & Related Work 5

2.1 Current GSRS . 5

2.2 Other Teaching Tools . 9

2.2.1 Teaching by Templates . 11

2.3 Chapter Conclusion . 13

3 Graph–Oriented Data Model 15

3.1 Meta–Model . 15

3.2 Use–Cases . 20

3.2.1 Molecule Activity . 21

3.2.2 Algorithmic–Block Activity 23

3.2.3 Blood Count Analysis Activity 25

3.2.4 UML–Class Diagram Activity 27

3.3 Graph Comparison . 29

3.3.1 Benchmark . 37

3.4 Student Evaluation . 37

3.5 Graph Properties & Optimization 39

4 Integration of Learning Materials 43

ix

CONTENTS

4.1 Incorporating learning materials into activities 43

4.2 Linking activities with learning materials 44

5 Conclusion 47

5.1 Summary . 47

5.2 Future Work . 48

Abbreviations 49

Bibliography 53

Appendix 55

A Screenshots . 55

B Videos . 70

C Simulation study . 75

x

LIST OF FIGURES

List of Figures

2.1 Kahoot - Teacher Quiz Activity Creation GUI 6

2.2 Yactul - BuildPairs Teacher GUI . 8

2.3 Yactul - BuildPairs Student GUI . 9

2.4 A possible graph–representation for a concrete programming example 10

2.5 A possible graph–representation for H2O water-molecule in the do-

main of chemistry . 11

2.6 A graph–representation for the caffeine molecule in the domain

of chemistry . 12

3.1 Our graph–oriented generic data model that acts as a meta-model

for all concrete activities . 16

3.2 Example of a template with two different solutions in the domain

of chemistry . 18

3.3 Molecule Activity – Sub-Model created from our Meta-Model . . . 22

3.4 Molecule Activity – Example of a graph resulting from building a

water molecule. The edges are unordered and undirected. More-

over, their type is ”MoleculeActivityLinkEdge”. All elements are

within the same composite data-structure. 23

3.5 Algo-Block Activity – Sub-Model created from our Meta-Model . 24

3.6 Algo-Block Activity – Example of a graph resulting from a control

flow where the edges are ordered and directed. 25

3.7 Blood Count Analysis Activity – Sub-Model created from our Meta-

Model . 26

3.8 BCA Activity – Example of a graph produced from the correspond-

ing sub-model composed of ordered and directed edges. 27

3.9 UML Class Diagram Activity – Sub-Model created from our Meta-

Model . 28

xi

LIST OF FIGURES

3.10 Graph Isomorphism approaches. The dotted arrows represent a

substitution between two nodes. 30

3.11 A typical graph isomorphism algorithm would find an isomorphism

between (a) and (b) since the graph structure is preserved, and a

bijection can be produced to attain (b) from (a), which is of course

not correct since nodes represent real world activity elements and

thus have a meaning. 31

3.12 Simplified UML Class Diagram for the Graph Implementation . . . 32

3.13 Concrete use-case of a graph produced by a molecule activity. The

nodes are enumerated only for identification purposes. 33

3.14 Example of substitutions between solution and student nodes. . . 35

3.15 UML Class Activity – Divide & Conquer approach is illustrated

using different colors representing each a different type of relation.

Each rectangle will represent a sub-graph Gi of the whole input

graph G. 36

3.16 Student Evaluation – Substitution between two graphs. 38

3.17 Strategy Design Pattern – UML Class Diagram to support multiple

evaluation algorithms. 41

4.1 Integration of Learning Materials – UML Class Diagram using the

Command design pattern. 44

4.2 Linking activities with learning materials – UML Sequence Diagram

illustrating communication flow between different technologies to

support opening related activities in documents. 45

1 Molecule Activity – The title page of our prototypical implemen-

tation. 55

2 Molecule Activity – Initially the from the template provided molecules

are randomly placed and a scale animation is run together with a

sound effect to simulate a pop-up. 56

3 Molecule Activity – Student has wrongly combined two oxygen

atoms with two chemical bondings. 56

4 Molecule Activity – The evaluation shows a missing hydrogen molecule

and colors the oxygen atoms red to illustrate an error. 57

xii

LIST OF FIGURES

5 Molecule Activity – The solution of a water molecule is presented. 57

6 Molecule Activity – One out of three patterns were recognized,

namely a bonding between two carbon atoms. The student re-

ceives an intermediate feedback to highlight this achievement. The

feedback consists of an animation that pops up and fades out very

fast to not disturb the student. 58

7 Molecule Activity – Two out of three patterns were recognized,

namely a bonding between a carbon atom and three hydrogen

atoms. The student receives an intermediate feedback to highlight

this achievement. The feedback is based on the number of achieved

patterns. 58

8 Molecule Activity – Three out of three patterns were recognized,

namely a bonding between a carbon atom and three hydrogen

atoms. The activity will shortly terminate, in favour of the student

so that no more time elapses that would otherwise cause a point

deduction. 59

9 Algo. Block Activity – The available statements on the right hand

side are provided through the tools relationship. The student needs

to drag-and-drop statements from right to left to create a control

flow. The problem is about filling the marmite with potatoes from

the left barrow. 59

10 Algo. Block Activity – The student is dragging a while-loop into

his list of statements. The loop will show its content as soon as it

is placed into the list. 60

11 Algo. Block Activity – The content of the while-loop is now

visible and the student is dragging a condition into it. 60

12 Algo. Block Activity – The student has now finished his task and

is ready to submit. 61

13 Algo. Block Activity – The evaluation were successful. 61

14 Algo. Block Activity – The solution matches the student’s answer. 62

15 Algo. Block Activity – The evaluation were not successful since the

student has put both actions in the wrong order which is illustrated

using a yellow color. 63

xiii

LIST OF FIGURES

16 Algo. Block Activity – Algo. Block Activity – The evaluation were

not successful since the student forgot one action statement which

is depicted using a red color. The missing element is injected using

a gray color. 63

17 Blood Count Analysis Activity – The student needs to drag-and-

drop health-items to the right anatomy in order to influence the

counts. 64

18 Blood Count Analysis Activity – As soon as the student drag-and-

drops all available health-items into the anatomy, the influences

will start using a timer. Positive or negative influences are depicted

using a green or red arrow, respectively. 64

19 Blood Count Analysis Activity – The student evaluation were not

quite successful and the framework colors the wrong items in red. 65

20 Blood Count Analysis Activity – The solution is shown using ranges

of accepted values. 65

21 Message alerting the student that the activity will be finished when

presenting learning materials since this could influence the result

or score. The message pops up after touching on red icon in the

bottom left. 66

22 Learning materials for a molecule activity providing different links

to ontologies about chemistry. 66

23 A Browser displaying ChEBI entry for water. ChEBI is a website

implementing a dictionary of molecular entities and is backed by

an ontology. 67

24 Learning materials in the form of PDF’s for an algo-block activity

are listed. 67

25 A PDF related to a programming course is presented to the stu-

dent. 68

26 Dedicated HTTP Links can be opened using our app from every-

where in the iOS platform. Our app then handles query parameters,

etc., and the dedicated task. 68

xiv

LIST OF FIGURES

27 The SoLeMiO add-in in Microsoft PowerPoint lists all resources

that have been found for the particular lecture slides. Here, we

have an URL and a video resource as listed in the right hand-side.

The URL encodes an activity and will be opened by our dedicated

app instead of the standard browser. 69

28 Benchmarking times – Time elapsed ordered in an ascending fash-

ion where the times are mean values computed from 30 indepen-

dent runs. An iPad Air 2 were used as a test device. The config-

urations are written as (#H,#O,#C)T where H is the number

of hydrogen, O the number of oxygen and C being the number

of carbons. We can observe that the bigger the number of atoms

become, the more time it takes to compute. The combination of

two or more high numbers of atoms has a significant impact on

the performance. The high peaks represent exponential increases . 75

29 Benchmarking times – Iterations ordered in an ascending fashion

where the values are means computed from 30 independent runs.

An iPad Air 2 were used as a test device. The configurations are

written as (#H,#O,#C)T . One iteration represents one exe-

cution of the algorithm 1. The high peaks represent exponential

increases. 76

xv

LIST OF FIGURES

xvi

CHAPTER 1. INTRODUCTION

1 | Introduction

The application of game-design elements and game principles in non-game

contexts, known as gamification, is the key building block for game-based student

response systems (GSRSs) [1]. As an active learning environment, GSRSs take

classic student response systems (SRSs) to a whole new level by making traditional

quizzes feel like actual games, thus increasing student attendance, engagement and

participation as reported by Morillas et al. [2]. Furthermore, a study conducted

by Scott Freeman et al., shows that students enrolled in a traditional STEM1

lecture are 1.5 times more likely to fail than those enrolled in an active learning

environment [3]. After all, considering that our present generation has grown up

in a very technological environment, it doesn’t seem very surprising that SRSs are

well received by students nowadays.

GSRSs make use of game mechanics such as points, levels, challenges, virtual

goods, leaderboards or gifting & charity. These elements help students to com-

pete with each other, to acquire rewards, status and self-expression, all based on

human natural desires [4]. Because of this finding, game mechanics are specifically

designed to soothe the students’ ambitions. As reported by Hakulinen et al., the

usage of game mechanics has shown to impact the students’ behaviour. Students

with more badges2 spent more time per exercise, suggesting that they thought

more about the problem before submitting [6]. Badges and other achievements

provide students with status and rank, ensuring challenge and competition within

the class in order to gradually increase engagement while improving knowledge.

As a human natural desire, competition is deeply ingrained in the human psyche

[4], thus representing an important mechanism to capture students’ attention,

which is nowadays already difficult enough since very often smart devices seem to

be more interesting than the lecture.

Most of the SRSs sare web-based, as this is the most convenient solution to

handle large heterogeneity of devices, which is clearly the case in traditional classes

where today’s students are interacting all the time with their mobile devices and

laptops. Nowadays there exist several SRSs where most of them are commercial

solutions. The amount of GSRSs on the other hand is very small. One reason for

this is that the term ’gamification’ itself is new. The majority of the current GSRS

only supports a very limited set of question types. Those question types that we

call activities, only maintain a question title with several textual answers where

1Science, Technology, Engineering and Mathematics
2Badges are a validated indicator of accomplishment, skill, quality or interest that can be

earned in various environments [5].

1

one or more can be correct. There are, after all, a minority of current state-of-

the-art solutions supporting more than one type of question. A recently proposed

GSRSs by Grévisse et al. [7] comes with a modular architecture that enables a very

loose integration of new question types, as they are considered as separate and

independent applications. Every activity can be developed separately and plugged

into the eco-system, strictly following the separation of concerns (SoC) principle.

Each activity application then handles its own business logic, data and student

evaluation.

Yet, as the activities are very heterogeneous, a common model is usually not

taken into consideration and therefore the different question types need to be

separately designed from scratch. This might be a reason why many (G)SRSs

only offer a very small amount of distinct question types. As most of today’s

(G)SRSs are commercialized, gathering insights in the architecture is very diffi-

cult. Nonetheless, the fact that activities are very diverse from their essence and

only a very limited amount of use cases exist suggests that there is no common

model on which different types of questions are based. An additional effort (and

the economical constraints) for a dedicated design would simply not be worth it,

considering the minimal requirements, i.e. the support for only a small set of

question types. Also, the evaluation of the students’ answers is distinct for each

and every activity which could be unified using a common model. Another short-

coming is that current SRSs only provide one single solution for an activity which

were to-date fairly adequate for very simple and non-game activities. However,

with more game-based question types, multiple distinct solutions become more

realistic.

Furthermore, current (G)SRSs do not provide a direct link between questions asked

during a game session and the corresponding content of learning materials. But

we believe that a continuous learning experience by revisiting course related activ-

ities at home while learning is important for fostering the learning process of the

individual student.

A common model would be beneficial for many reasons. First of all, the im-

plementation process would follow a common guide, thus being homogenized.

Developers can hence write code that is applicable to many different activities

and activity components. For example some visual effects such as a fancy explo-

sion can be reused in many different activities. This reusability feature could also

be applied to activity components. A line segment or simple shapes that are often

present in many activities would only need to be designed once and could then

be used many times among different activities. Furthermore, states, actions and

effects that are applied to game-based activity components could be encapsulated

in modules and shared as well.

Introducing logical links between components for relational purposes would cause

2

CHAPTER 1. INTRODUCTION

the creation of a graph which then could be used for generalizing the evalua-

tion process because we would abstract from concrete types, and only work with

nodes and edges. The graph-oriented approach would moreover allow to accept

different, but semantically equivalent solutions. An example for this would be an

activity about chemical molecules where students need to drag-and-drop atoms Chemical

Molecules

Example

and combine them using edges to build chemical compounds. Suppose a student

needs to create a water molecule (H2O). If there are multiple oxygen and hydrogen

atoms, semantically all equal but still distinct instances of the same type, then

how would traditional evaluation algorithms deal with such an ambiguous situ-

ation? The graph-oriented method could handle this by solving the well-known Ambiguity

Problemcomputational graph isomorphism problem, hence allowing any combination of se-

mantically equivalent elements of a solution to be valid. Also, the graph-oriented

approach would allow teachers to define multiple graphs as solutions, resulting in

more flexible questions. Nodes and edges could also be annotated with semantics

for a fine-grained integration into learning material to provide students with a

continuous learning experience by enabling them to revisit concepts and lead to

increased performance in subsequent replays.

With our goal to create a main-model for game-based activities, we propose a

graph-oriented generic data model that facilitates development, makes the most

of reusability, gives teachers the opportunity to provide different possible solutions

– as diverse graphs –, enables a fine-grained integration of activities into learning

materials and unifies the evaluation process. Our generic data model acts as a

meta-model for all concrete activities. Different activity-specific models can be

realized using our meta-model. Components with their corresponding behavioural

business-logic such as actions with their visual effects are encapsulated in modules

and ready to be reused for any type of activity. Upon creation of an activity,

teachers can specify more than a single solution, all backed by different graphs.

Teachers can also specify a template, which is a pre-defined graph based on a

solution, that students can use as a starting-point to work on. Additionally, tools

can be specified per activity. These are elements the students can use to create

their graph and manipulate the template. Futhermore, teachers can define pat-

terns, which are sub-graphs of a solution graph. These are meant to be used as an

intermediate feedback system and help students highlight their current progress.

Nodes are semantically enriched with meta-information to be compliant with con-

tents from learning materials so that students can play activities given a concrete

learning concept. The evaluation algorithm is generic and takes as input two

graphs where one is constructed by the student during gameplay and the other

represents a solution of a specific activity. By solving the graph isomorphism

problem, the algorithm is able to evaluate the graph for correctness and enrich

the nodes with additional information about possible errors.

3

Coming back to our example with the chemical molecules, the graph evaluation

algorithms takes care about elements or nodes that are semantically equivalent

and accepts – strictly speaking – different instance-solutions as the one provided

by the teacher since the equivalence is no longer checked using a strict value-

comparison. This is the main advantage of our work compared to current state-

of-the-art solutions.

Our concept is realized as an iOS framework that provides GSRSs developers

the important tools to create outstanding activities while making the most of

reusability using our data model. The framework also handles the evaluation

process which hence does not need to be implemented by the concrete activities.

Our objectives were driven by the following research questions.

Research Questions:

RQ1 Assuming activities are built on a graph-based model, can the evaluation

of an activity then be generalized so that it is the same among different

activities?

RQ2 What are the advantages of such a model?

RQ3 How can we integrate activities into learning materials in order to establish

a continuous learning experience?

Chapter Overview: In chapter 2, we analyse current GSRSs and show the

main shortcoming that our work overcomes. We additionally present some ideas

of other teaching tools outside the realm of (G)SRSs that could be very rewarding

to have implemented in GSRSs based on our model. Our graph-oriented generic

data model is elaborated in chapter 3 together with some use case examples of

activities based on our proposed model. We also show how the students’ answers

can be evaluated using graphs. Furthermore, we discuss some optimization options

and graph properties. Chapter 4 describes how we can create a mapping between

learning materials and activities so that students can play related activities during

their learning process at home. Finally we conclude in chapter 5 and present some

future work extensions.

4

CHAPTER 2. BACKGROUND & RELATED WORK

2 | Background & Related Work

Contents

2.1 Current GSRS . 5

2.2 Other Teaching Tools . 9

2.2.1 Teaching by Templates 11

2.3 Chapter Conclusion . 13

In this chapter, we will present two GSRSs from both commercial and research

fields, and discuss how activities are created and evaluated in current approaches.

Since to the best of our knowledge we could not find anything closely related to

our work, we consider our approach as novel and we will thus show additional

ideas of possible activities that could be created using our method, that would be

otherwise difficult to design with current approaches. We were also inspired from

teaching tools outside the realm of (G)SRS to gather missing features in GSRSs

that could be beneficial to have.

2.1 Current GSRS

The number of today’s GSRSs is very limited. Most of them are commercials

solutions, but there are also some initiatives driven by research. The probably most

popular commercial GSRS is Kahoot1. Yactul2 in the other hand, is a recently

proposed GSRS by Grévisse et al. [7] that has emerged to overcome the limitations

of current solutions.

Kahoot currently offers four different activities: Quiz, Jumble, Discussion and Kahoot

Survey. A Quiz is a sequence of questions where one or more answers can be

correct. A Jumble is a sequence of questions where students need to drag answers

in the correct order. A Discussion is a way to initiate a debate or brain-storming

with the students and Survey can be used to gather the audience’s opinions. Both

Quiz and Jumble are gamified whereas Discussion and Survey do not support

any game mechanic. Also, Quiz and Jumble are the only activities that can be

evaluated, i.e. compared with a solution provided by the teacher.

Kahoot itself only gives very little insights into their architecture. We know that

their architecture is build on micro-services, where each application is responsible

for handling a small part of their business-logic [8]. However, we do not know

1https://kahoot.com/
2https://yactul.uni.lu

5

https://kahoot.com/
https://yactul.uni.lu

2.1. CURRENT GSRS

whether they are using a common model for their activities, and whether the

model is graph-based. However, we can demonstrate the ambiguity problem using

a simple experiment with our chemical molecule activity example as mentioned in

chapter 1. To the best of our knowledge, neither Kahoot nor any other GSRSsExperiment

Kahoot natively supports such an activity, but we can still illustrate the shortcoming. We

will use Kahoot’s Quiz type for this example. In the following screenshot (figure

2.1), we can see the graphical user interface (GUI) used by teachers during activity

creation.

Figure 2.1: Kahoot - Teacher Quiz Activity Creation GUI

Besides the limitation of only allowing up to 4 answers, the teachers need to

specify which answer is correct. Note that the question is asked in such a way that

more answers can be correct. This feature is of course possible, but it requires

the teacher to select each and every element by hand. Without a restriction on

the number of possibly correct answers, this setup would certainly not be feasible

as the number of elements grows. Also we shall point out that this scenario is

illustrated with only one variable. Imagine having a question that requires to

create a water molecule by combining any two hydrogen atoms with one out of

multiple oxygen atoms. In this example, there would be two variables, namely ”O”

and ”H”. Thus any combinatorial enumeration of existing oxygen and hydrogen

atoms would need to be specified in before-hand. To emphasize this, suppose the

student plays with two oxygen instances, O0 and O1, and two hydrogen instances,

H0 and H1. Furthermore, assume the teacher specifies the solution as (O0,H0)
and (O0,H1), where (xi, yj) is a relation between xi and yj symbolizing a link

between atoms to represent a chemical bond. However, the student has now

several possibilities to come up with a semantically equivalent solution. Those

can be described as

{{(Oi,Hj), (Oi,Hk)} ∣ ∀i, j, k ∈ {0,1}, j ≠ k},

6

CHAPTER 2. BACKGROUND & RELATED WORK

resulting in

1) {(O0,H0), (O0,H1)}

2) {(O0,H1), (O0,H0)}

3) {(O1,H0), (O1,H1)}

4) {(O1,H1), (O1,H0)}

where the first listing corresponds to the solution provided by the teacher. A

possibility to handle such situations would be to allow multiple solutions, but the

teacher would need to enumerate them by hand. The evaluation process would

then check all possible solutions until it finds a match. Simple boolean algebra

could be used as follows:

{(O0,H0) ∧ (O0,H1)}∨

{(O0,H1) ∧ (O0,H0)}∨

{(O1,H0) ∧ (O1,H1)}∨

{(O1,H1) ∧ (O1,H0)}.

But this is certainly not scalable. Another problem with such an approach

would be that it only works if the teacher has a deterministic view of the elements

of an activity in before-hand. Activities where students can create additional

elements cannot be solved using this method as the teacher would no longer be

able to enumerate all possible solutions.

Although we do not know if Kahoot is using a graph as the main model for their

activities, we can however motivate that using a graph–oriented method would

make the evaluation more flexible by comparing semantically equivalent nodes,

thus allowing any solution to be valid as long as the graph structure is preserved.

This characteristic could handle situations as described in the experiment.

Yactul currently supports six different activities that can be all evaluated. The Yactul

GSRS has been designed with the goal to leverage the tightly coupled relation of

activities with the core system by making its architecture extensible wrt. new quiz

types as stated by Grévisse [7]. The architecture is designed in a very similar way

to Kahoot’s microservices. Activities are implemented as individual and separate

applications, each encapsulated in a module to facilitate the plugging into the eco-

system. Yactul is providing a minimalistic model on which activities are based.

However, the model does not cope with activity specific elements, but rather with

meta-information (figure 2.2) such as activity name, question title, time, difficulty

level, et cetera. The evaluation for a specific activity is outsourced from the eco-

7

2.1. CURRENT GSRS

system and implemented by each concrete activity application to make the most

of the separation of concerns (SoC) principle.

Although it is known that activities in Yactul are not graph-oriented, we can

make a similar experiment as above to illustrate the same shortcoming. For this,Experiment

Yactul we will use the quiz type Build Pairs, where students need to connect two related

elements to build a pair. This process is being repeated until all available elements

are within a pair. As in the first experiment, we will use a chemistry example. In

the following figure, the GUI for creating BuildPairs activities is depicted.

Meta
Information

Elements

Figure 2.2: Yactul - BuildPairs Teacher GUI

As we can see in figure 2.2, there are several identical elements. However,

internally those elements are being distinguished using an identification (ID) key

which causes the evaluation algorithm to only accept answers that have the exact

same ID as the solution. The students have thus no chance to figure out which

solution elements were taken by the teacher as seen in figure 2.3.

8

CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.3: Yactul - BuildPairs Student GUI

The evaluation process will not be successful if the student did not combine the

exact same instances as specified by the teacher. This ambiguous situation could

be avoided using a graph as the main model for activities because the algorithm

would compare the graph structure rather than concrete instances.

2.2 Other Teaching Tools

In this chapter, we will analyse some features outside of the realm of (G)SRS

in order to gather useful attributes that are missing in current (G)SRS that could

be an integral part of a graph–oriented data model. As a concrete instance to

illustrate the problem, we considered a programming activity which is, to the best Programming

Activity

Example

of our knowledge, non-present in today’s (G)SRS. Also, such an activity would

help students in computer science classes in many ways. Kelleher et al. [9]

report that using graphical symbols for programming tasks simplifies the syntax

because only certain combinations of symbols are allowed, so that syntactic rules

are inherent and students do not need to cope with this difficulty. Indeed, the

syntax represents a real obstacle to students of introductory programming courses

because it prevents them to focus on the logic, structure and problem solving

involved in programming as observed by Po-Yao [10].

Most of activities of this kind are used in visual programming environments

(VPEs) and intelligent tutoring systems (ITSs). VPEs are tools that make use

9

2.2. OTHER TEACHING TOOLS

of graphical symbols which can be interactively manipulated in such a way that

they result in an executable program. ITSs in the other hand, are, in many

ways, very similar to human tutors [11]. They provide customized instructions

with immediate feedback to learners. Based on cognitive science and Artificial

Intelligence (AI), ITSs have proven their worth in multiple domains in Education

[12][13]. For programming tasks, current ITSs expect student to write code that

can be compiled on the fly and evaluated for correctness. These kind of tools are

suited for more experienced students that already know the syntax.

A graph–oriented model would be excellently suited for a programming activity.

Every programming concept such as conditionals, loops or ordinary statements

can be represented as a node in a graph. Directed and ordered edges between

nodes would represent following statements. In the figure 2.4, a possible graph–

representation of a program is depicted that could be created using a graph–

oriented model for activities.

While

Start

If

.

order: 1 order: 2

order: 1 order: n order: morder: 1

Statement
1

Statement
n

Statement
1

Statement
m

. . .

Figure 2.4: A possible graph–representation for a concrete programming example

Edges are ordered to represent the position in a sequence of statements (nodes).

Teachers could then specify a solution and do not need to worry about unique

elements. The evaluation algorithm would cope with semantically equivalent ele-

ments, and accept any solution as long as the graph structure is preserved.

Moreover, we shall point out that the applicability of a graph–oriented approach

is not limited in the domain of programming. For instance, Chem-Tutor3 [14] is

an ITS for undergraduate and high-school students to learn about foundational

chemistry concepts related to atomic structure and bonding. In the academic re-

search, Gupta et al. propose Chemistry studio, an ITS which aims to automatically

solve problems, in the domain of Periodic Table and its properties, using proper

logic and reasoning to generate solutions and explanations in accordance with the

3https://chem.tutorshop.web.cmu.edu/

10

https://chem.tutorshop.web.cmu.edu/

CHAPTER 2. BACKGROUND & RELATED WORK

interest and knowledge of the student [15]. Let us take this idea for a concrete

chemistry–activity example to showcase the usability of a graph–oriented model

using the molecule activity as described in chapter 1. In contrast to the program-

ming activity where we had directed and ordered edges, molecules or atoms would

now be connected using undirected and non-ordered edges. In figure 3.4, a possi-

ble graph representation is depicted where atoms are represented by nodes. Here,

a water–molecule is created by combining two hydrogen atoms with an oxygen

atom.

H

O

H

Figure 2.5: A possible graph–representation for H2O water-molecule in the domain
of chemistry

In such an activity, a graph–oriented model would be well suited since the re-

dundancy of the elements is higher than in other activities because many chemical

compounds include a lot of elements of the same type, thus many different but se-

mantically identical solutions would arise. Chemical bonds would be represented as

undirected edges, and this already forms a graph without any pre-transformation,

which is very practical.

2.2.1 Teaching by Templates

Teaching by templates is the idea of guiding students, through the use of

templates, in their learning processes. Imamy states that templates help to achieve

a well planned learning path and enforce the important concepts and constructs

[16]. Today’s (G)SRSs do not offer such a feature, and we believe that this idea

is very useful for students. Teachers can provide a template in form of a graph

that acts as a starting point, and students can hence interactively manipulate

the template until they consider it as finished and ready to be evaluated. Such

a feature would introduce new kinds of questions. Teachers could ask questions

about correcting a given template. The ability of spotting and correcting an error

could be tested. Or, questions about expanding and completing a template could

be interrogated. This would allow teachers to ask more complex questions by

providing a certain percentage of the solution, that would otherwise take a lot of

time for students to create. Current (G)SRSs are designed to provide time-based

questions, and the work of reaching the solution takes time. Therefore, a lot of

11

2.2. OTHER TEACHING TOOLS

solutions are fairly small because students will be busy by interactively working

with the game-elements of an activity. Templates could provide help, by allowing

teachers to pre-define a subset of the solution that students can take as a starting

point. To illustrate this, let us take the molecule activity example as mentioned

in chapter 1. In the following figure, an example of a template for the molecule

activity is presented.

C

O

C

N

C

CH3

C

N

O

CH3

N

CH

NCH3

Figure 2.6: A graph–representation for the caffeine molecule in the domain of
chemistry

The molecule depicted in figure 2.6 represents the quit complex molecule caf-

feine. In a molecule activity, the students would need to drag-and-drop atoms

and combine them using links, which takes time to finish. Although this time-

consuming gameplay is very important for gamification reasons, such complex

molecules would rather not be part of a game-session in a chemistry class due to

time constraints. However, using templates, the teacher could provide a subset of

the solution graph and ask the the student to extend it. Another possibility would

be to introduce errors, and ask students to fix them. Challenging questions could

be templates that are exact same as the solution and ask students to find errors,

although there is none.

We consider a graph-oriented data model as perfectly suited for the incorpo-

ration of templates. The template would consist of a graph, either a sub– or

superset of the solution-graph. Students can thus interactively manipulate the

template until they submit it for evaluation.

12

CHAPTER 2. BACKGROUND & RELATED WORK

2.3 Chapter Conclusion

In this chapter, we have presented some current GSRSs and their main short-

coming about not being capable of handling different solutions that are, however,

semantically equivalent. In current systems, teachers would need to enumerate all

possible solutions in before-hand, assuming the elements of an activity are static.

Each quiz type in current systems handles the evaluation separately, although this

could be generalized using a graph–oriented data model. We have shown that

concepts from different domains such as programming or chemistry can be seen

as nodes. Edges between nodes could be used to represent relations between con-

cepts. For molecules, the edges would serve to create chemical bonds between two

atoms. For programming concepts, a directed and ordered edge would represent

an arranged flow from one statement to another. The evaluation of a graph-based

model would rely on the preservation of the graph structure.

Teaching by templates is a very interesting idea that we believe could be ben-

eficial to integrate into GSRSs. They offer more flexible questions and have the

potential to help students in their learning process by providing a starting point.

Moreover, they enable teachers to provide more complex questions that would

otherwise take to much time to ask in a classroom. A graph–oriented data model

is perfectly suited for incorporating templates because they would be considered

as a sub- or superset of the solution graph.

13

2.3. CHAPTER CONCLUSION

14

CHAPTER 3. GRAPH–ORIENTED DATA MODEL

3 | Graph–Oriented Data Model

Contents

3.1 Meta–Model . 15

3.2 Use–Cases . 20

3.2.1 Molecule Activity . 21

3.2.2 Algorithmic–Block Activity 23

3.2.3 Blood Count Analysis Activity 25

3.2.4 UML–Class Diagram Activity 27

3.3 Graph Comparison . 29

3.3.1 Benchmark . 37

3.4 Student Evaluation . 37

3.5 Graph Properties & Optimization 39

This chapter covers the core of our work which is the graph–oriented generic

data model. We will present and motivate the main concepts of our approach.

Next we will show some concrete use-cases derived from the our data-model. Then,

we will describe how two models of the same type can be compared without prior

knowledge of the type of nodes. This is related to the evaluation process of an

activity since the students’ answers will consist of graphs which then need to be

compared against one or more solution graphs. Next we will elaborate on the

points distribution during the student evaluation process. Finally we will discuss

some graph-properties and consider some optimization options.

3.1 Meta–Model

Our graph-oriented generic data model acts as a meta-model. Kelsen et al.

describe meta-modelling as the process of defining a model as a language for

expressing other models [17]. The sub-models are thus built by instantiating the

metaclasses and associations from the meta-model. The meta-model is used for

each concrete activity as a fundamental basis. Our meta-model is presented in

figure 3.1.

15

3.1. META–MODEL

has

0..1

*

causes

*

*{ordered}

affects* *

tem
plates

0..1

affects

*

*

checks

*

*

controls

checks

*

State

*{ordered}

links
*

LinkType

*

View

0..1

corresponds

0..1

*

{subset}

ConstraintActivity

Component

Element Composite

*

0..1

children

Action

0..1

corresponds

*

Reaction

*

triggers

*

patterns

*

solutions

0..1

*
*

tools

0..1

{subset}

Figure 3.1: Our graph–oriented generic data model that acts as a meta-model for
all concrete activities

The Composite Design Pattern, proposed by the Gang of Four (GoF) [18],

is applied to treat a group of elements the same way as a single instance

of the same activity type. We consider this feature as very useful in the

context of GSRSs. Considering our molecule example from chapter 1, a

molecule would be implemented as a composition of multiple atoms. This

adequately simplifies the implementation. For instance, moving and dragging

a molecule is made simpler because we would consider a set of atoms as a

single instance. Note that the design pattern is optional, so that developers

can choose whether or not they want to adopt it. A component or element

represents an entity in an activity that students can interact with.

The Component–LinkType relation is used to create the graph. Elements are

used as nodes and an edge between two components is realized as a logical

typed link (LinkType). The type is important for supporting links that have

different meanings. A concrete example for this is an UML Class Diagram.

We could image an activity where students can create and manipulate UMLUML Class

Diagram

Activity

Example

classes for learning polymorphism or inheritance concepts as often required

in object-oriented programming (OOP) tasks that are otherwise difficult to

ask in current activity types. Each relation such as association or inheritance

can be denoted using a different typed edge. We need to distinguish the

edges for the evaluation later on. It is certainly important to know what type

16

CHAPTER 3. GRAPH–ORIENTED DATA MODEL

of edge the student has used to connect two components. An inheritance

edge for instance is different than an implementation edge, thus the evalua-

tion algorithm will need to distinguish such cases when comparing against a

solution.

Components and links can both have an optional view which is an abstract

representation of a graphical content that will be later used in an activity. The

edges can be ordered so that we can define a position of an element in a se-

quence of components. Considering our programming example from chapter

2.2, an ordered edge would represent an arranged flow from one statement to

another. A while-block can contain several statements that have a certain

position in a sequence. From the point of view of a graph, a while-node

would comprise several edges to it’s containing elements where the order rep-

resents the position in a sequence as illustrated in figure 2.4. Furthermore,

links between nodes in such a programming activity would not have a view.

The link is only logical and is needed for creating the graph. For the molecule

activity in the other hand, links would have a view that would consist of an

undirected line segment between two atoms. Moreover, the meta-model does

not specify a direction for an edge. The interpretation whether an edge is

directed or undirected should be specified in the sub-models of concrete activ-

ities. For instance, in our molecule example, the edges are undirected because

the direction is not important, i.e. O–H = H–O with H being a hydrogen

atom and O being an oxygen atom. However, considering our programming

activity, the direction is gaining more importance. Directed edges are defin-

ing the control flow from one statement to another. Having two statements

sa and sb, then clearly sa Ð→ sb ≠ sb Ð→ sa since program statements are

written in a sequential order.

The Activity–Component quaternary relation is used to define which compo-

nents are part of the solutions, templates, available tools or patterns. So-

lutions, templates and the patterns are all graphs that are defined by the

teacher. The tools relation defines what elements students have at their

disposal. This feature can be used to only show elements related to some

aspects covered in class. For instance, in an UML class activity, we could

image that students can only use inheritance and associations on classes, and

interfaces with realization features are not available because of the current

progress of the class.

The pattern relationship is used to define several sub-graphs created from a

solution graph. This feature helps students to follow their progress, and ac-

quire intermediate feedback. Furthermore, if n out of n patterns were found,

the activity immediately terminates in favour of the student. This way, no

points can be deducted because of additional time expenses.

17

3.1. META–MODEL

Patterns and templates can be created from a given solution, therefore the re-

lation is denoted with the subset constraint. However, concerning termplate,

the opposite is also true, resulting in the template being a superset of the

solution graph by introducing additional elements that are not present in the

solution. The teacher can specify a template for a given activity on which

the students can then work on. A template is optional, so it is up to the

teacher to decide whether he would like to provide one. The solution graph

is, of course, compulsory but also not limited to one. The teacher can spec-

ify different solutions per activity which we believe is very useful because it

offers more flexible questions. Considering our molecule activity, the teacher

could ask a question about building an alcohol molecule such as ethanol or

methanol. Through a template, one could provide atoms for both, resulting

in two different solutions. An example of this is depicted in the figure 3.2

where the teacher does not specify any links but rather only components.

These relations have emerged as a response to the research question RQ2

which is about advantages of a graph–oriented model. Solutions, templates

and patterns are each represented by a graph, independent of the concrete

type of activity which makes the implementation very simple.

O

H

C

H

H

H
H

H
H

C
O

Template T

C

H

H

H

H

HO

Solution S1S1 - Methanol

H

C

H

H

H

HC O

Solution S2S2 - Ethanol

H

Figure 3.2: Example of a template with two different solutions in the domain of
chemistry

18

CHAPTER 3. GRAPH–ORIENTED DATA MODEL

We can observe that S1 ⊂ T and S2 ⊂ T or T ⊇ S1 and T ⊇ S2, considering

only the components. There are, of course, more than two alcohol molecules.

However, given the template, only those two were possible. The template

feature might be very useful depending on the type of activity, but it requires

the teacher to carefully think about the questions in advance since he might

not have thought about all possible solutions.

Component–State relation is useful for behavioural reasons. For instance, in

our molecule activity, atoms could maintain a state

s ∈ {NOT_CONNECTED, CONNECTED, FULLY_CONNECTED}

where the atoms act differently depending on s. For example, two atoms, i

and j, would accept a chemical bond with each other, if

si ≠ FULLY_CONNECTED ∧ sj ≠ FULLY_CONNECTED,

meaning that i and j have not reached the maximal number of bonds which

is limited by their chemical valency constraint. Furthermore, states can con-

tribute to the gamification of an activity by drawing the elements differently

depending on their state. Visual effects and sounds can be various across

different states, introducing a dynamic user experience. Moreover, the states

can help to simplify the evaluation process. In this example, it is more conve-

nient to compare two different states rather than compute a common prop-

erty.

Component–Constraint relation is used to define clear restrictions for elements

in activities. As a concrete example, the number of possible chemical bonds

of an atom is restricted by its valency number. Or, the condition block of a

while concept can only accept a statement that is a condition. We cannot

put a Loop concept into the condition part of another Loop statement. This

design is meant to simplify the development by outsourcing the constraints

so that other classes such as Action can use them for validation purposes.

The Component–Action–Reaction ternary relation is based on the causality

principle from physics. Bunge describes causality as a relationship between

causes and effects [19]. In simple words, if A caused B, then A happened

before B, which implies that causes always occur before their resultant effects

as stated by Harris [20]. For GSRSs, this idea can be applied because every

student interaction will cause something that is either valid or not. Many

actions are caused by the student by manipulating elements. The actions

executed by the students will be checked for validity. The validity is based on

the state of one or more elements in conjunction with coupled constraints.

19

3.2. USE–CASES

Depending whether the action is valid, i.e. all constraints are valid and the

state is as intended, then a corresponding reaction will be caused. The re-

action will perform the main intention of the student. For instance when

the student tries to create a link between two atom, a corresponding action

is performed. It will draw the line that is following the student’s finger and

upon release, it will internally check the state of the atom and its valency.

Depending on the success of the test, it will cause a reaction that will fi-

nally establish a chemical bond between the two atoms by drawing the line,

performing some animation and sound effects, updating the states, creat-

ing a composite out of the atoms and inserting a new edge into the graph.

Reactions can trigger other reactions as well, either in parallel or sequential

execution. For instance, a reaction about creating a molecule out of two

atoms can cause a different reaction that handles the composition of both

atoms. This is relevant because any of the two atoms might have been in

a composite before the new chemical bond. If both were in a composite,

then a new composite-reaction would handle the merge of the two composite

data-structures.

All UML classes except for State and Composite are represented as abstract

classes. The meta-model tackles three main objectives. First and foremost it

is graph–oriented due to providing logical links between components. This very

abstract construct is the main building block of our approach. Secondly, the

model offers four important relations, namely solutions, templates, patterns, and

tools which are features that were not yet considered in current GSRS so far. In

combination with a graph that the students create during gameplay, these features

are very simple to integrate because all four parts are forming a graph as well.

Last, it provides a guide for developers to make the most of reusability. Since all

elements are based on a common protocol, actions, reactions and constraints can

be shared among different activities. The model thus provides a loosely coupled

design by outsourcing the main concepts.

3.2 Use–Cases

In this section, we will present some concrete use-cases of activities that we

created using our meta-model. We will show a conceptual high level view using

UML class diagrams. The following use-cases cover activities in different domains

that we intentionally tackled to demonstrate the applicability of our work. The

fields cover chemistry, computer science and chemical biology. The first three out

of four presented activities were implemented, whereas the last activity in this

chapter will only be presented conceptually.

20

CHAPTER 3. GRAPH–ORIENTED DATA MODEL

Concerning all sub-models, we have removed the activity component with its

four relations because it is static for all sub-models. Moreover, we are using

SpriteKit1 as our graphics framework and therefore we replaced the abstract

View component from the meta-model in all sub-models with the highest abstrac-

tion of a graphical entity in SpriteKit, which is SKNode.

3.2.1 Molecule Activity

The molecule activity, that we described in chapter 1, were the first idea of

an activity that we came up, perhaps because its structure is the most similar

to a graph. Nodes and edges are represented by atoms and chemical bonds,

respectively. Also, an atom maintains a symbolic label to describe its value which

is equivalent for labelled nodes in an ordinary graph.

The idea of this activity is held very simplistic. The students need to combine

atoms using lines to create molecules. Atoms and molecules can be dragged

around and bonds between two atoms can be deleted and created. Since GSRSs

are not meant to used as an exam platform but rather to help students in their

learning process using gamification, we have added the valency of an atom below

its label. This information reminds the students about how many bonds an atom

can have. Therefore, atoms with a zero valency such as helium cannot have a

link, thus whenever the student tries to create one, the action will not work. The

sub-model for the molecule activity produced from our meta-model is presented in

figure 3.3 and some concrete screenshots of the GUI are depicted in the figures 2 –

5 in part A of the appendix. Furthermore, screenshots of an example of usage for

the pattern relationship are included in the figures 6 – 8 in part A of the appendix.

In video 1 from part B of the appendix , a molecule-dedicated gameplay is shown.

1https://developer.apple.com/spritekit/

21

https://developer.apple.com/spritekit/

3.2. USE–CASES

0..1

*

causes

*

*{ordered}

affects* *

affects

*

*

*

controls

State

*{ordered}

links *
LinkType

SKNode

0..1

corresponds

Constraint

Component

Atom Molecule

*

0..1

children

0..1

corresponds

*

Action

triggers

*

*

AtomViewAtomBonding
EdgeView

AtomDoMove
Reaction

NotValidLink
Reaction

ValidLink
Reaction

Compositize
Reaction

UpdateAtom
StateReaction

*

AtomValency
Constraint

AtomSameLinks
Constraint

Reaction

AtomMove
Action

AtomCheck
LinkAction

DoubleTapOn
LinkAction

DrawLinkAction

*{ordered}

has checks2 {DISCONNECTED,2 {DISCONNECTED,
CONNECTED,CONNECTED,
FULLY CONNECTED}FULLY CONNECTED}

number of same
links is set to 3

type =
“MoleculeActivityLinkEdge”

*

Figure 3.3: Molecule Activity – Sub-Model created from our Meta-Model

In the core of the model, the composite has been replaced with Molecule and

the abstract Element component is now represented by a concrete Atom class.

Molecules are containers for atoms and are created using at least two atoms. Both

atoms and links have their corresponding view, AtomView and AtomBondingEdge

View, respectively. Two constraints are used for restricting an atom in terms of

the number of links. An atom cannot have more bonds than its valency allows,

and we restricted the number of same links to three for two reasons. Firstly, more

than three links between two nodes were not realistic in real world scenarios and

secondly, a visual upperbound is important in order to not unnecessarily overflow

the view and negatively influence the user experience. Three states have been

introduced to provide information about the bonds of an atom, i.e. whether an

atom is connected or has reached its maximal number of bonds. Moreover, there

exists only one type of edge between components. The type is a string and should

be unique among the different activities because we are working with a common

meta-model, thus a single LinkType table in a database will be shared among all

concrete activities.

Several actions and reactions are deployed. Former are used to handle user in-

teractions such as allowing the student to delete a chemical bond by double

tapping (DoubleTapOnLinkAction), drawing a link while sliding with the finger

(DrawLinkAction), checking the constraints when trying to combine two atoms

using a link (AtomCheckLinkAction) or simply for moving a molecule (AtomMove-

22

CHAPTER 3. GRAPH–ORIENTED DATA MODEL

Action).

Latter are used to perform some of the intended actions. For instance ValidLinkRe-

action and NotValidLinkReaction are executed depending on the constraints ver-

ified in AtomCheckLinkAction. If the link is valid, meaning that both constrains

AtomValencyConstraint and AtomSameLinksConstraint do not fail, the former

reaction creates a composite out of the atoms or merges two composites by in-

voking a CompositizeReaction. The latter action removes the temporary line that

the student has drawn. Depending on the action, the states of atoms are updated

in the UpdateAtomStateReaction component.

An example of a graph resulting from the sub-model is depicted in figure 3.4

with the nodes being labelled as ”X ∶ Y ” where X is the type of atom and Y is

the concrete class from the sub-model. Furthermore, all three elements or nodes

are within a composite construct.

H
:Atom

O
:Atom

H
:Atom

Figure 3.4: Molecule Activity – Example of a graph resulting from building a
water molecule. The edges are unordered and undirected. Moreover, their type
is ”MoleculeActivityLinkEdge”. All elements are within the same composite data-
structure.

3.2.2 Algorithmic–Block Activity

The Algorithmic–Block or Algo–Block activity is based on the programming

example from chapter 2.2. The main idea is about enabling students to drag-

and-drop statements provided through the tools relationship in order to create a

control flow. The tools or statements are inexhaustible.

The provided statements in our activity are abstracted away, i.e. methods, proce-

dures or functions are grouped as actions. The activity is not meant to be used

for syntax verification, nor to be compilable, although the latter could be inte-

grated on top of our work. Syntactic rules are inherent to help students to focus

on the problem solving tasks. For instance, similar to the molecule activity where

students cannot create a link with a helium atom because of its zero valency, in

this activity students cannot put non-conditional statements into the condition of

23

3.2. USE–CASES

a loop. Currently the activity supports an If -conditionals, a While-loops, boolean

conditions and actions. We shall point out that the activity is certainly extensible,

but as a proof of concept we did not consider all possibilities such as supporting

different loops or conditionals and therefore, the sub-model is incomplete.

The sub-model for the described activity produced from our meta-model is

presented in figure 3.5 and some concrete screenshots of the GUI are depicted

in the figures 9 – 16 in part A of the appendix. In video 2 from part B of the

appendix, a gameplay of an Algo-Block activity is shown.

causes

*

*{ordered}

affects* *

affects

*

*

*

controls

*{ordered}

links *
LinkType

SKNode

0..1

corresponds

Constraint

Component

Statement Composite

*

0..1

children

Action

triggers

*

*

BlockView

RemoveStatement
Reaction

AddStatement
Reaction

*

Conditional
Constraint

Reaction

StatementMove
Action

StatementDrop
Action

*{ordered}

checks

CodeBlock

Conditional
CodeBlock

Condition

Action

If

LoopWhile

Start

Concrete
Statement

StatementTouch
Action

ConditionalBlock
View

Statement
View

type =
“AlgoBlockActivityEdge”

contains

1..*

1
contains

0..*0..*

*

Figure 3.5: Algo-Block Activity – Sub-Model created from our Meta-Model

In the core of the model, the abstract Element component is now represented

by an abstract Statement entity. In contrast to the molecule activity, we have

not used the composite component in this sub-model to demonstrate its optional

use. We have achieved the same intention by introducing CodeBlock-statements

that are an abstract notion of a group of statements together with directed and

ordered edges to represent the workflow of the statements.

The inheritance hierarchy from the abstract Statement entity is designed to

support single statements as well as a group of statements within a block. Pro-

gramming concepts such as loops and conditionals contain a condition, therefore

both conform to the ConditionalCodeBlock which in turn conforms to CodeBlock.

Similar to the molecule activity, some UI elements based on SKNode are intro-

24

CHAPTER 3. GRAPH–ORIENTED DATA MODEL

duced, and actions mainly handle user interactions such as touches on statements

or simply moving elements around. Depending on the ConditionalConstraint that

is used to check whether a student tries to add a non-condition element as a

condition to a ConditionalCodeBlock entity, the action invokes an AddStatemen-

tReaction that performs the needed tasks to append an element to the list of the

control-flow or to a CodeBlock component.

An additional Start statement is introduced to make the graph connected. The

top-most statements added by the student are ordered, but the graph specifies

ordered edges. We were therefore forced to maintain a root node that points to

the top-most statements with ordered edges. This root node does not have a

view nor can it be manipulated by the student. It represents a static entity which

is part of every graph. This process is a compromise of our approach, and in a

sense it introduces an overhead, which we, however, believe is negligible due to

the main benefits of our method.

An example of a graph resulting from the sub-model is depicted figure 3.6.

While
:Loop

Start
:StartState

ment

If
:Conditional
BlockCode

.

order: 1 order: 2

order: 1 order: n order: morder: 1

Statement
1

Statement
n

Statement
1

Statement
m

. . .

Figure 3.6: Algo-Block Activity – Example of a graph resulting from a control
flow where the edges are ordered and directed.

3.2.3 Blood Count Analysis Activity

The third and last implemented activity that we call Blood Count Analysis

(BCA) Activity is based on chemical biology, which is to the best of our knowledge

not implemented in any other (G)SRS. The main idea is to interrogate students

about blood counts or other vitals such as blood pressure. The teacher specifies

some counts provided through a template that needs to be adjusted using health

items which are given through tools. Each health item has a positive or negative

influence on a subset of counts. The students need to drag-and-drop health items

25

3.2. USE–CASES

from a health bag into an anatomical view of a human which in turn activates the

influence process on certain counts. The items influence the counts on a timed-

interval to simulate real-world waiting times. For instance, increasing low blood

pressure with caffeine as an item can be achieved much faster than increasing the

iron in the blood with iron supplements. Moreover, the time-based effects are not

inexhaustible. The students need to pay attention to not exceed the range of a

count, which they need to know by heart. After a certain amount of time, the

students have to put the health item back to the health bag and add it again

to the human anatomy to reactivate the procedure. This is done on purpose to

introduce an additional level of time pressure.

The activity is meant to control the knowledge of students in different ways.

Firstly, the students can be checked whether they know the biological abbreviations

by heart. Next, they have to know the possible range of a count. Last but not

least, the students must also know about the influences of health items that are

used to increase or decrease the counts.

The sub-model of the BCA activity created from our meta-model is presented

in figure 3.5 and some concrete screenshots of the GUI are depicted in the figures

17 – 20 in part A of the appendix. In video 3 from part B of the appendix, a

gameplay of a BCA activity is presented.

causes

*

*{ordered}

affects* *

affects

*

*

*

controls

*{ordered}

links *
LinkType

SKNode

0..1

corresponds

Constraint

Component

Element Composite

*

0..1

children

Action

triggers

*

*

HealthItemTimer
StopReaction

HealthItemTimer
StartReaction

*

Range
Constraint

Reaction

TouchAction

*{ordered}

checks

BCAHealthItem

BCACountItem

BCARootCount
Item

MoveHealthItem
Action

BCAHealthItem
View

BCACountItem
View

RemoveHealth
Item

AddHealthItem

type = “BCAActivityEdge”

influences

BCAStaticInfo

*

Figure 3.7: Blood Count Analysis Activity – Sub-Model created from our Meta-
Model

For this type of activity, the composite design pattern is not needed since the

26

CHAPTER 3. GRAPH–ORIENTED DATA MODEL

task is about modifying elements provided by the teacher rather than maintaining

a hierarchy of components. The elements are hence static. The discussed count

and health items are conforming to Element. Furthermore, the teacher can specify

some additional information such as the age or gender of a person. Health items

influence count items, either positively or negatively, which is denoted using a

dependency relation. Similar to the previous algorithmic activity, we need to

introduce a designated node that is also conforming to Element to imply an order

on the edges in order to maintain a connected graph.

For this type of activity, we have implemented a single constraint that is used

to ignore influences when they are about to exceed a pre-defined range of a count

item. The provided actions handle user interactions such as moving elements or

adding or removing items from the health bag. Depending on where the items

are placed, either in the health bag or the human anatomy, a dedicated reaction

is triggered to respectively stop or start the influences.

An example of a graph resulting from this sub-model is depicted figure 3.8.

Root
:BCARoot
CountItem

c1c1

:CountItem
cncn

:CountItem. . .

order: 1 order: n

c2c2

:CountItem

order: 2

. . .

Figure 3.8: BCA Activity – Example of a graph produced from the corresponding
sub-model composed of ordered and directed edges.

3.2.4 UML–Class Diagram Activity

The last activity is designed for modelling purposes in computer science classes.

The activity provides students with elements from standard UML class diagrams.

Similar to the molecule activity, students need to combine UML classes using

typed edges such as inheritance, association, etc., and drag-and-drop UML meth-

ods or attributes into the classes. This type of activity can be used for training

important OOP concepts such as polymorphism that is usually done via program-

ming. However, we believe that such an activity is better suited for this kind of

tasks because it leverages from the difficulties of programming languages such as

syntax and rather concentrates on the main task. The sub-model as presented in

figure 3.9 is by no means complete, i.e. does not support all features of a stan-

dard UML class diagram. Many concepts such as keywords (static, public,

27

3.2. USE–CASES

etc.) or method and attribute types are abstracted away for simplification reasons,

which can, however, be integrated in a later stage. Due to time constraints, we

were not able to implement this activity. Nevertheless, we wanted to show its

sub-model due to a specific reason. In contrast to all sub-models so far, this type

of model supports more than one type of link. The evaluation of such an activity

is slightly different, since UML relations are a mix of ordered and unordered edges,

but graphs cannot support both at the same time. We elaborate on this specific

issue in section 3.3.

causes

*

*{ordered}

affects* *

affects

*

*

*

controls

*{ordered}

links *
LinkType

SKNode

0..1

corresponds

Constraint

Component

Element Composite

*

0..1

children

Action

triggers

*

*

CreateRelation
Reaction

RemoveElement
Reaction

*

MemberMethod
Constraint

Reaction

TouchAction

*{ordered}

checks

MoveClass
Action

UMLClass

UMLInheritance
Edge

RemoveElement
Action

AddClassElement
Action
Remove

ClassElement
Action

DrawRelation
Action

CheckRelation
Action

RemoveRelation
Reaction

UMLInterface

UMLAbstract
Class

UMLConcrete
Class

UMLAttribute

UMLMethod

Class

ClassElement

MembersClass

contains0..*
0..*

contains

0..*

0..*

0..* 0..*

type 2 {UMLAssociation,type 2 {UMLAssociation,
UMLInheritance,UMLInheritance,

UMLImplementation,UMLImplementation,

UMLDependency,UMLDependency,

UMLAggregation,UMLAggregation,

UMLComposition}UMLComposition}

Cardinality
0..10..1

0..* 0..*

UMLAssociation
Edge

UMLDependency
Edge

UMLImplementation
Edge

UMLAggregation
Edge

UMLComposition
Edge

*

Relation
Constraint

Figure 3.9: UML Class Diagram Activity – Sub-Model created from our Meta-
Model

The components coming from Element are defining a hierarchy of inheritance.

Interfaces cannot contain attributes or members but rather only methods, and

concrete and abstract classes can incorporate both, methods and members. The

UML standard supports six different types of relations, that are each realized as

a type of link. Links are extended so that they can support cardinalities on both

endings, which is the case for association relations. Each type of link is associated

with a corresponding view since the visualisation differs from edge to edge.

MemberMethodConstraint and RelationConstraint are proposed in this con-

text. Former is used to make sure that attributes and methods are right-placed

into a class entity while drag-and-dropping by the student. Latter is introduced to

28

CHAPTER 3. GRAPH–ORIENTED DATA MODEL

disallow some relations. For instance, when a student tries to use inheritance on

an interface, then this constraint will fail, because an UMLImplementationEdge

should be used instead. Although we could have omitted such a constraint and

let the student produce errors, we, however, believe that activities should help

students in their learning process. The effect is similar to the molecule activity

where the valency is shown below a molecule, and constraints make sure that

zero-valency atoms cannot be connected by the student. This is done on purpose

to remind the students on some facts.

Actions are mainly used for user interactions and check the constraints for

validity before actually triggering any reaction. Reactions are taking care of data-

structures, i.e. deleting or creating additional elements such as relations between

two specific classes or adding or removing some methods or attributes.

3.3 Graph Comparison

The graph comparison between the students’ answers and the solution provided

by the teacher is an essential part of our work. We need to compare graphs for

evaluation purposes which leads to the well-known open computational graph

isomorphism problem. The problem is about determining whether two graphs

are isomorphic, that is, whether there is a bijective mapping from the vertices

of one graph to the vertices of another graph such that the edge adjacencies are

preserved. However, the complexity of such a comparison is not known to be

feasible in polynomial time, and no efficient algorithm currently exists [21]. As a

consequence, brute force algorithms are proposed. However, run-times of these

techniques exponentially increase with the size of the input graphs, restricting

the applicability of such methods to rather small graphs. We however articulate

the view that scalability in the realm of GSRSs is rather less important because

activities are simply not meant to contain an enormous amount of elements. Yet

alone from a UI perspective, it would be difficult to fit a significant number of

nodes within a screen of a size of a laptop, smartphone or tablet. We have

nevertheless benchmarked the comparison algorithm, and we elaborate on the test

runs in more detail in section 3.3.1.

Standard isomorphism algorithms try to substitute each node with each other

because there is no prior knowledge about the input graphs. However, in our

use-cases, we always need to compare two graphs of the same type. This prior

knowledge gives us an opportunity to skip unnecessary comparisons between unre-

lated nodes. To illustrate this, let us consider the simple carbonic acid compound

in figure 3.10.

29

3.3. GRAPH COMPARISON

C

O

H

OO

H C

O

H

OO

H

Student graph Solution graph

(a) Graph Isomorphism Example with the standard approach on a H2CO3-molecule when
substituting the hydrogen atom.

C

O

H

OO

H C

O

H

OO

H

Student graph Solution graph

(b) Graph Isomorphism example with our approach on a H2CO3-molecule when substituting
the hydrogen atom.

Figure 3.10: Graph Isomorphism approaches. The dotted arrows represent a sub-
stitution between two nodes.

Due to the lack of prior knowledge of the type of graph, traditional isomor-

phism algorithms would compare an hydrogen atom with any other atom from the

solution graph. This process is then repeated for all nodes, resulting in

(n
2
) = (6

2
) = 15

substitution comparisons where n is the number of atoms as depicted in figure

3.10a. In our approach, however, we only compare semantically equivalent nodes,

resulting in

∑
s∈S

(∣s∣
2
) = (2

2
) + (3

2
) + (1

2
) = 1 + 3 + 0 = 4

substitution comparisons where S = {{H0,H1},{O0,O1,O2},{C0}} and Ak de-

notes an atom with an unique identifier k for distinction purposes.

There are some heuristics that can be used for speeding up the decision about

isomorphism. Generally, the order, size, vertex degree, etc., are taken into consid-

eration to determine whether two graphs are not isomorphic because these can be

verified relatively fast. However, what we really want to achieve is to not reject

a student’s attempt but rather evaluate his graph, although not being correct.

Even more, we would like to tell the students exactly what they did wrong, or

what they did forget. Therefore, such heuristics are unfortunately not an option.

30

CHAPTER 3. GRAPH–ORIENTED DATA MODEL

Furthermore, nodes are represented by activity elements, and have more than just

a label. They have attributes and concrete values that need to be verified as well.

We need thus to go beyond isomorphism, that is, not only comparing the graph

structure, but also each semantically equivalent pair of nodes for value accordance.

The problem of only comparing an isomorphism is illustrated in figure 3.11.

H

O

H

(a)

O’

H’

H’’

(b)

Figure 3.11: A typical graph isomorphism algorithm would find an isomorphism
between (a) and (b) since the graph structure is preserved, and a bijection can
be produced to attain (b) from (a), which is of course not correct since nodes
represent real world activity elements and thus have a meaning.

In figure 3.12, a simplified UML class diagram for the graph modelling is pre-

sented that our evaluation algorithm 1 is based on.

The Element abstract class in the bottom right represents the same Element

component from the meta-model. The Node or more specifically EvaluationNode

has been introduced as a wrapper for the elements, and to separate the ele-

ments from evaluation annotations such as fitness scores. The same is being done

with edges. The two first methods in the Element signature are very important

because they influence the evaluation algorithm. For instance, in our molecule

example, two atoms are semantically equal if they are of the same type. The

GraphProtocol represents a graph in an abstract form where both methods are

implemented differently depending on the direction of a graph. Undirected graphs

ignore the direction whereas directed graphs do not. Both graphs conform to

EvaluationGraphProtocol and implement several procedures to perform the eval-

uation, while respecting the direction that depends on the sub-models of concrete

activities. Each concrete activity implements a strategy for the graph direction,

that is later used by the GraphEvaluator to create an instance of a concrete graph

in order to perform the evaluation.

For the following algorithm, let us use figure 3.13 as a basis.

31

3.3. GRAPH COMPARISON

GraphProtocol
pureValueComparison: Bool

getLinkedNodes(fromNode: Node) : [Node]
getEdgeBetween(n1: Node, n2: Node) : [Node]

Node

isSemanticallyEquivalent(To e: Node) : Bool
isEquivalentByValue(To e: Node) : Bool

EvaluationNode
fitness: Double
substitutionSolutionNode: Node

0..*

1
contains

data 11

Element

isSemanticallyEquivalent(To e: Element) : Bool
isEquivalentByValue(To e: Element) : Bool
drawAsWrong()
drawAsMissing()
drawAsOrderedWrong()

. . .
. . .

EvaluationGraphProtocol

computeIsomorphism(comparingGraph:
EvaluationGraphProtocol)

UndirectedGraph

DirectedGraph

incorporates

0..*

1

. . .

. . .

EvaluatedEdge
fitness: Double
wronglyOrdered: Bool

1

0..*
comprises

Edge
n1: Node
n2: Node
k: Int
order: Int

GraphEvaluator

Activity

graphStrategy:
EvaluationGraphProtocol

. . .

. . .
getGraphStrategy() :
EvaluationGraphProtocol
. . .

evaluate(…)
. . .

Context

. . .

usesuses

data.isSemanticallyEquivalent
(To e: Element) : Bool
. . .

Figure 3.12: Simplified UML Class Diagram for the Graph Implementation

32

CHAPTER 3. GRAPH–ORIENTED DATA MODEL

CaCa

ObOb

HbHb

OcOcOaOa

HaHa C0C0

O1O1

H1H1

O2O2O0O0

H0H0

Student graph Solution graph

Figure 3.13: Concrete use-case of a graph produced by a molecule activity. The
nodes are enumerated only for identification purposes.

Algorithm 1 Algorithm for finding the best isomorphism

1: procedure Isomorphism(G) ▷ The solution Graph G
2: S ← createSubstitutions(G)
3: P ← createPermutationGroups(S)
4: A← computePermutationAlternatives(P)
5: a0 ← A.first
6: f0 ← 0.0
7: for a ∈ A do
8: i← computeAndRateIsomorphism(a,G)
9: f ← computeF itnessScore(i)

10: if f > f0 then
11: f0 ← f
12: a0 ← a
13: if f0 == 1.0 then
14: break ▷ 100% match found
15: end if
16: end if
17: end for
18: return a0 ▷ The best alternative
19: end procedure

The algorithm starts by creating a substitution mapping S by grouping se-

mantically identical elements. Based on figure 3.13, the following substitution

mapping will be created:

Solution groups Student groups

(H0,H1) (Ha,Hb)
(O0,O1,O2) (Oa,Ob,Oc)
(C0) (Ca)

Table 3.1: Concrete substitution mapping for 3.13

The next step involves creating different permutations based on each student

group that we store in P. These will be the following:

33

3.3. GRAPH COMPARISON

Inter-group student nodes permutations

(Ha,Hb), (Hb,Ha)
(Oa,Ob,Oc), (Oa,Oc,Ob), (Ob,Oa,Oc),
(Ob,Oc,Oa), (Oc,Oa,Ob), (Oc,Ob,Oa)
(Ca)

Table 3.2: Inter-group permutations based on the substitutions in 3.13

The permutations are used to create alternative student answers. The atoms

in each entry from the substitution table 3.1 will be substituted with the atoms in

the corresponding index in the student group. Let Ax ↔ Ay denote a substitution

between Ax and Ay. For hydrogen, there are two atoms, hence 2! = 2 different

substitutions, which are H0 ↔ Ha, respectively H1 ↔ Hb and H0 ↔ Hb, respec-

tively H1 ↔ Ha. For oxygen, there are 3! = 6 different permutations possible.

When a student forgets an atom, the inter-group permutation will simply put an

empty place-holder to mark the atom as missing. For example, assume the student

did forget atom Oc. Then the following permutations would have been created:

Inter-group permutations

(Ha,Hb), (Hb,Ha)
(Oa,Ob,∅), (Oa,∅,Ob), (Ob,Oa,∅),
(Ob,∅,Oa), (∅,Oa,Ob), (∅,Ob,Oa)
(Ca)

Table 3.3: Inter-group permutations based on the substitutions in 3.13 omitting
Oc.

In the other hand, additional non-required nodes will be ignored. The third step

involves the construction of A, which is the set of different alternatives. These

are a combinatorial enumeration of the individual permutations, each representing

a possible solution as shown in the figure 3.4.

34

CHAPTER 3. GRAPH–ORIENTED DATA MODEL

Alternatives permutations

1

(Ha,Hb)
(Oa,Ob,Oc)
(Ca)

2

(Hb,Ha)
(Oa,Ob,Oc)
(Ca)

3

(Ha,Hb)
(Ob,Oa,Oc)
(Ca)

4

(Ha,Hb)
(Ob,Oc,Od)
(Ca)

.

12

(Hb,Ha)
(Oc,Ob,Oa)
(Ca)

Table 3.4: Combinatorial permutations of possible solutions.

There will be 12 alternative permutations since 2! ⋅ 3! ⋅ 1! = 2 ⋅ 6 ⋅ 1 = 12 where

each xi represents the number of semantically same atoms or nodes. Next, for

each entry, the nodes at each index from the solutions will be substituted with

the elements at the same index as illustrated below in figure 3.14.

Figure 3.14: Example of substitutions between solution and student nodes.

The last step covers the iteration of all alternative permutations and the cre-

ation of a new graph based on the substitutions. The graph will be then evaluated

using a fitness score. We elaborate on the evaluation in section 3.4. When a fit-

ness score of 1 is found, the algorithm will stop. Otherwise, the best alternative

35

3.3. GRAPH COMPARISON

so far will be picked.

The presented approach works for a single type of link, i.e., for a graph that is

either directed or undirected. For the UML Class activity where we support multi-

ple edges of different directions, we simply run the algorithm multiple times with

different sub-graphs as input based on a divide & conquer approach as illustrated

in figure 3.15.

Person

Animal

Dog

0..*

1..*

IAnimal

makeSound(…) : …

owns

Cat

G1G1

G2G2

G3G3

G =
Sn=3

i=1 GiG =
Sn=3

i=1 Gi

Figure 3.15: UML Class Activity – Divide & Conquer approach is illustrated using
different colors representing each a different type of relation. Each rectangle will
represent a sub-graph Gi of the whole input graph G.

For instance, we can see that three different relations are used in this example.

Inheritance and Implementation edges are directed whereas Association edges are

undirected. The graph will be split into three parts, each evaluated separately.

At the end, the scores are accumulated considering all sub-graphs. Moreover, the

complexity is being reduced due to the split.

Our approach covers the first research question RQ1 about whether the evalu-

ation can be generalized for all activities. It also partially covers RQ2, since this is

a main advantage compared to non graph-based solutions. We have achieved this

by solving the graph isomorphism problem using the described algorithm 1 where

we mainly consider the graph structure rather than a naive value comparison.

All elements conform to a common protocol where all must implement dedicated

methods that define which elements are considered to be semantically equal. This

enables us to abstract from concrete types, hence to create a generic solution.

36

CHAPTER 3. GRAPH–ORIENTED DATA MODEL

3.3.1 Benchmark

Although we argue that our approach is not meant to be scalable in the context

of GSRS, we have nevertheless benchmarked our method. We have chosen the

molecule activity for the test runs. The molecule activity is the candidate with the

probably highest number of semantically equivalent nodes as they are required by

many chemical compounds. To demonstrate the impact of substitutions between

nodes, we have limited the benchmark with three atoms where we gradually in-

crease the number of each atom. For each setup, we have performed a simulation

study consisting of 30 independent runs to collect estimated means. The results

are shown in part C of the appendix. We are measuring the number of iterations

and the time elapsed for running algorithm 1. An iteration is a comparison be-

tween two random graphs based on the configuration, i.e., the solution graph and

an alternative substitution of the student’s graph. Although the time elapsed for

a comparison varies between devices, and the iteration number is a better metric,

we have still put it as a reference. In general, we can observe what was to expect.

The higher the number of atoms, the higher the mean values. However, the im-

pact on the performance is highly dependent on the number of atoms within a

group because this implies many combinatorial permutations. Note that we have

tested the performance locally on an iOS device. However, the results could be

further improved using parallelization options when outsourcing the algorithm to

a dedicated server.

3.4 Student Evaluation

The student evaluation is an essential part of our work, and is based on the

graph comparison algorithm. The point distribution is computed in line 8 in

algorithm 1 by rating an alternative graph substitution. The nodes and edges of

the graph are being decorated using a fitness score between 0 and 1 as shown in

figure 3.12. Furthermore, the fitness value of an edge can be 1.0 but its order

may be wrong. Therefore the edges contain an additional boolean value indicating

whether the order is wrong. The points are being distributed in a rather naive way.

In figure 3.16 a student alternative graph G with its corresponding solution graph

G′ are depicted where k and o represent the number of links between two nodes

and the index of the order of an edge from a sequence of edges, respectively.

37

3.4. STUDENT EVALUATION

H

C

O

.
.
.

H’

C’

O’

.
.

.

student graph solution graph G0G0GG

k = 1, o = ;k = 1, o = ;

k = 1, o = ;k = 1, o = ;

k = 1, o = ;k = 1, o = ;

k = 1, o = ;k = 1, o = ;

Figure 3.16: Student Evaluation – Substitution between two graphs.

Let us assume the substitutions have been found, i.e., O↔ O′, C ↔ C ′, etc.,

and let N and N ′ define the set of nodes in G and G′ respectively. Moreover, let

E and E′ define the set of edges in G and G′, respectively, and let sx denote the

substitution of x, where x ∈ {n, e}, n ∈ N , sn ∈ N ′, e ∈ E and se ∈ E′. Then,

∀n ∈ N ∣ n =v sn Ô⇒ cni = cni + 0.5

∀en ∈ E ∣ en.k = sen .k Ô⇒ cni = cni + 0.25

∀en ∈ E ∣ en.o = sen .o Ô⇒ cni = cni + 0.25

where en is an edge outgoing from n, cn is a counter for n ranging from 0

to 1 for each comparison between two nodes n and sn, and x =v y is a value

comparison between x and y. Finally, the fitness is computes as

fn =
∑i=0 cni

max(ln, lsn)

where lx represents the number of links outgoing from x.

In general, we are counting the number of correct matches between any two

nodes that are considered as a substitution. We are distributing a score for each

node and we give the most importance to the value comparison by providing 50%

of a possible score. The remanding 50% can be obtained depending on whether

the student has used the same number of links k between two nodes and whether

the order index o is the same between two edge substitutions. This process will

be then repeated for each linked element from a given node. Finally, the score

of a node will be computed by counting how many sub-points between 0 and 1

38

CHAPTER 3. GRAPH–ORIENTED DATA MODEL

are collected. This number will be then divided by either the number of links of

the current node or its substitution. A maximum function is used to penalize the

student when he has used more or less links than needed. This approach is based on

both a value comparison between nodes and the verification of presence/absence

of an edge.

In the BCA activity, however, we have noticed that the edges are not dynamic,

hence not changing. The main task is to adjust attributes of elements while the

logical links are not modified. We have noticed a very high score most of the time,

although containing a lot of errors because the student evaluation is based 50%

of the time on the correctness of the edges, that are static in this kind of activity,

resulting in a 100% match. We were forced to handle such situations, and have

provided a boolean flag indicating if a pure value comparison should be considered

as shown in figure 3.12. Per default, this flag is not being set. However, if it is

set, the fitness score of a node is then computed as

fn =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if n =v sn
0, otherwise

ignoring any verification of edges, since they are assumed to be the same.

We have also wanted to show students the error location. Therefore, we have

introduced some error indications using different colours based on the Element

protocol as depicted in figure 3.12. Each element must implement three dedicated

methods to manipulate their view according to whether an element is determined

to be missing, wrong or wrongly ordered. In figure 15 and 16 in part A of the

appendix, the evaluation colouring is shown for an instance of an Algorithmic

Block activity. The colouring can also be seen in videos 1 – 3 from part B of the

appendix.

3.5 Graph Properties & Optimization

We have build our graph evaluation algorithm without prior knowledge about

the nature of the input graphs. We have, however, observed that the graphs

produced by an Algortihmic Block Activity and a BCA Activity are trees.

Proof. We will prove the statement using the following definition of a tree

taken from [22]:

A connected graph with n vertices is a tree if and only if it has n− 1
edges.

39

3.5. GRAPH PROPERTIES & OPTIMIZATION

Concerning the resulting graph of a BCA activity, every count item will be

a node without any outgoing edges. We introduced a root node (BCARoot-

CountItem) to connect all the count items for ordering reasons, and to be graph

compliant, hence the resulting graph is inherently connected and the count items

will consequently be leaves. Now, if there are n count items and one root node,

then we will have n + 1 nodes. For each leaf we introduced a link to the root,

resulting in n edges, that is exactly one less than n+1, which is the statement. ∎

Now, considering the resulting graphs of an Algorithmic Block Activity entity,

we have the following implicit properties:

1) There exist two types of statements: Block-Statements such as conditionals

or loops that can contain other statements or Non-Block-Statements that

cannot enclose any other statement.

2) There are no parallel links between any two statements. Parallel links are

for instance possible in a molecule activity, thus introducing cycles in the

graph.

3) Every non-StartStatement has exactly one parent.

4) The root node or StartStatement has no parent.

Let L denote the set of ”top-most” elements in the algorithm list and let C

be the set of children of every block-statement in L obtained by transitivity. Let

R be the root node and S denote a statement the student would like to add.

Furthermore, let (Si → Sj) denote a directed edge from Si to Sj which causes Si

to be the parent of Sj .

The student has two possibilities to add S into the algorithm list. Either he

adds it to L, hence (R → S) or he adds it to another block-statement B where

B ∈ L or B ∈ C, resulting in (B → S). Similar to the BCA activity, the root

node is introduced to connect all statements in L, thus ∀Li ∈ L ∣ (R → Li). This

implies that the graph is connected.

Now, since the graph is connected and no parallel edges are possible, we know

that between any two statements, there is exactly one edge. Let n denote the

number of nodes in the graph and let e denote the number of edges. Starting with

n = 1, only maintaining a root node, there will be no edges, hence e = 0⇔ e = n−1.

Every new introduced statement causes another statement to become a parent of

it, hence for every new node a new edge is introduced between two vertices which

means that if e increases by one, so does n for n ≥ 1. Therefore, the relationship

e = n − 1 ⇔ n = e + 1 is maintained throughout the whole construction of the

graph, and we will have n − 1 edges, which is the statement. ∎

40

CHAPTER 3. GRAPH–ORIENTED DATA MODEL

Context/Client

GraphEvaluator
strategy : Strategy

Strategy

 evaluate(…)

GraphStrategy

 evaluate(…)

TreeStrategy

 evaluate(…)

Figure 3.17: Strategy Design Pattern – UML Class Diagram to support multiple
evaluation algorithms.

Although we have tried to optimize the brute-force algorithm by only consid-

ering semantically equivalent nodes, there is still room to improve knowing that

some input graphs are trees. The complexity for solving a tree-isomorphism prob-

lem is known to be linear [23][24][25][26], which is clearly an optimization option

to consider. Due to time constraints we were not able to implement an alternative

algorithm for handling tree data-structures. However, in figure 3.17 we present

a mechanism based on the strategy design pattern [18] on how to integrate an

alternative algorithm for the evaluation into our architecture.

The GoF defines the strategy-pattern as follows:

”Strategy defines a family of algorithms, encapsulates each one, and

makes them interchangeable. Strategy lets the algorithm vary inde-

pendently from the clients that use it”.

This extensible design enables a smooth integration of different evaluation

algorithms. Note that, before we can decide which algorithm to run, it is required

to identify whether the input graph is indeed a tree. This could be done by

verifying the absence of cycles in the graph.

Another optimization factor to take into consideration is the implementation of

the equivalence comparison of entities of the Element class as shown in 3.12. For

instance, considering the molecule activity, two atoms are semantically equivalent

if they are of the same type. In the other hand, considering the UML class

41

3.5. GRAPH PROPERTIES & OPTIMIZATION

activity, it is advised to implement the semantically equivalence not only based on

the type. In such an activity, the probability of having a lot of concrete classes is

high. This will not only cause the resulting graph to increase in size, but also the

possible substitutions will increase as well. For better performance, the number

of substitutions should be kept as small as possible. An option for this kind of

activity would be to compare two concrete classes also for the name. Hence, two

concrete class instances would be considered as semantically equivalent if they

share the same class name.

42

CHAPTER 4. INTEGRATION OF LEARNING MATERIALS

4 | Integration of Learning Materials

Contents

4.1 Incorporating learning materials into activities 43

4.2 Linking activities with learning materials 44

In this chapter, we describe how we tackle research question RQ3, i.e. about

how to establish a bidirectional mapping between activities and learning materials

so that students can access any learning material related to an activity within

a game-session, and play associated activities from learning sources at home in

order to foster a continuous learning experience. We believe that the integration

of context-based learning materials into activities helps avoiding context switches,

that would otherwise interrupt the students’ line of thought [27] or even cause an

abandonment of the current learning task [28]. Additionally, it helps students to

instantly retrieve activity-related materials, which eliminates the need to search

from a vast collection of documents, that would require a significant amount of

time and might lead to an information overload [29].

4.1 Incorporating learning materials into ac-

tivities

The integration of learning materials into activities is based on the Linked Data

principle and is realized through semantically annotating activities, nodes and

edges of the corresponding solution graphs. In figure 4.1 a UML class diagram is

presented to showcase our implementation.

Every element contains a set of human readable terms that can be specified

by the teacher. Per term, multiple learning resources can be linked. As a proof

of concept, we have limited ourself to web pages and pdf files. In order to enable

a smooth support of new learning materials, we have used the command design

pattern [18].

The GoF defines the command pattern as follows:

”It encapsulates a request as an object, thereby letting you parametrize

clients with different requests, queue or log requests, and support

undo-able operations.”

43

4.2. LINKING ACTIVITIES WITH LEARNING MATERIALS

Context/Client

YMLearningMaterialProtocol
name: String
url: String

YMLearningMaterialTypeEnum
website
pdf

<< enumeration>>
type 11

YMWebsiteLearningMaterial YMPDFLearningMaterial
pageNumber: Int?. . .

YMLearningMaterialCommandProtocol

execute(data: YMLearningMaterialProtocol)

YMLearningMaterialWebsiteCommand
…

execute(data: YMLearningMaterialProtocol)

YMLearningMaterialPDFCommand
…

execute(data: YMLearningMaterialProtocol)
. . .

contains

0..*

1..*

YMSemanticTerm
terms: [String]

1..*

uses

0..*

key

1

1

YMElement
….

contains

0..*

1..*
from meta-model

. . .

data

uri: String

uses0..*

Figure 4.1: Integration of Learning Materials – UML Class Diagram using the
Command design pattern.

Each command contains a unique key, which is of the same type as a learn-

ing material defined in the YMLearningMaterialProtocol. The business-logic for

displaying a web page or downloading and showing a pdf is each encapsulated in

a different command class. Whenever new types such as video or personal notes

are introduced, a new dedicated command can be realized dealing with the task

to present the resources to the student. This design enables a loosely coupled

system, and provides a relative simple way to support new types of materials.

The Unique Resource Identifier (URI) and an Uniform Resource Locator (URL)

are used to be conform with the Linked Data principle as described by Tim Berners-

Lee, the inventor of the World Wide Web (WWW) [30]. Using the URL, we

can fetch any document from the WWW for further treatment by the individual

commands.

Screenshots showcasing the integration of learning materials are depicted in the

figures 21 – 25 in part A of the appendix. In video 4 from part B of the appendix,

a gameplay showcasing the usage of learning materials is presented.

4.2 Linking activities with learning materials

In the previous section, we have shown how we integrate different types of

learning materials into a related activity. In this section, we will discuss the other

direction flow, i.e., obtaining activities from, and related to, a learning material.

44

CHAPTER 4. INTEGRATION OF LEARNING MATERIALS

This enables students to directly switch to our application and play an activity

related to a learning resources. However, this would require learning resources

or even single pages to be semantically annotated. Therefore, we use the two

following technologies to accomplish our goal.

The ALMA (Adaptive Literacy-aware learning Material IntegrAtion) repository

contains learning resources such as sideshows or book excerpts and Web

resources. where each resource is annotated with programming concepts

from the ALMA ontology [31].

The SoLeMiO (Semantic Integration of Learning Material in Office) tool is a

Microsoft Office Add-in that is able to recommend and integrate learning

material via semantic entity recognition [32]. Using ALMA as the main source

of documents, the tool is able to fetch resources as well as concepts and

present the retrieved data. The tool is also able to identify concepts from a

text, and then request related documents from ALMA.

In figure 4.2, an example of a communication flow between our architecture

and SoLeMiO and ALMA is illustrated.

SoLeMiO
Add-In

Yactul
Server

ALMA
Server

Student
using iOS

Yactul
Mobile App

reads a document in PowerPoint
with SoLeMiO add-in

fetchs resources related
to concepts

Concept
identification

returns relevant resources:
URL: yactul.uni.lu/mobile/activity?id=2yactul.uni.lu/mobile/activity?id=2

opens web page using URL

returns web content

returns web content

redirect

Figure 4.2: Linking activities with learning materials – UML Sequence Diagram
illustrating communication flow between different technologies to support opening
related activities in documents.

The communication flow starts with the student reading a document in an

Office application with the SoLeMiO add-in installed. SoLeMiO will identify the

key concepts in the content using state of the art concept recognition and entity

linking tools. It will then send a request to the ALMA server to retrieve relevant

resources related to the identified concepts. For our use case, activities are web

45

4.2. LINKING ACTIVITIES WITH LEARNING MATERIALS

resources and are being retrieved through a REST interface using an URL. This in-

formation is returned to the add-in by the Yactul server. Yactul Mobile, our proof

of concept, and the Yactul server are pre-configured to allow certain URI’s to be

redirected to our dedicated application. The iOS platform will recognize the spe-

cific URL and redirect the student to the local installed mobile application where

the activity will be launched. The URL1 that is specified for redirection purposes

contains a wildcard to allow any following path with zero or more characters. This

redirection feature is realized using Universal Links2 that allows HTTP URL’s to

be opened using dedicated apps instead of the browser. Upon redirection, our

application then handles the rest, i.e., reading the URI and query parameters and

creating the activity. Note that the activity may not be stored locally, so the

application needs to contact the Yactul server to retrieve missing information.

A screenshot showing that custom HTTP links can be opened using our app

can be found in figures 26 and 27 from the part A of the appendix. In videos 5

and 6 from part B of the appendix , the usage of universal links is presented.

1yactul.uni.lu/mobile/*
2https://developer.apple.com/ios/universal-links/

46

yactul.uni.lu/mobile/*
https://developer.apple.com/ios/universal-links/

CHAPTER 5. CONCLUSION

5 | Conclusion

5.1 Summary

In this thesis, we propose a graph–oriented approach for modelling activities.

The main benefit of using our generic data-model lies in the evaluation of an

activity which covers research questions RQ1 and RQ2 about generalizing the

evaluation and advantages of a graph–oriented data model. Based on graphs, any

answer that is semantically equivalent to the solution will be accepted. By solving

the well-known computational graph isomorphism problem, the preservation of the

graph structure is considered rather than a strict value comparison with unique

identifiers as commonly used in today’s (G)SRS. This enables teachers to deploy

many activity elements of the same type while only defining a solution using a

subset of the instances.

We additionally propose new features based on our method which also cover

research question RQ2. Teachers can define multiple graph-based solutions, re-

sulting in more flexible questions. Inspired by the idea of teaching by templates,

teachers can provide a template which is a sub- or superset of a solution graph.

Both teachers and students can benefit from this idea. Students obtain a basis

or a starting point to work on and teachers are thus able to prepare more com-

plex problems that would otherwise be too time-consuming in traditional game-

sessions. Next, we proposed patterns, which are sub-graph of a solution graph.

Whenever a student creates a part of the solution, hence a pattern, an intermedi-

ate feedback is presented. When all patterns are found, the activity immediately

terminated in favour of the student in order to avoid point deductions because of

remaining time constraints.

Furthermore, we have established a bidirectional mapping between activities and

learning materials as response to research question RQ3. Activity-related course

resources are integrated to enable a direct access within an activity in order to

avoid context switches that could cause an abandonment of the learning process.

Based on the ALMA repository and using the SoLeMiO add-in, students can ad-

ditionally access activities from a learning resource during their learning process.

To demonstrate the applicability of our approach in different domains, we have

deployed three new activities based on computer science, chemistry and chemi-

cal biology using our own dedicated framework. The framework implements our

proposed meta-model, handles the evaluation, copes with learning materials as-

sociated to an activity and comes with many graphical views to enable a smooth

development of activities.

47

5.2. FUTURE WORK

5.2 Future Work

Tree Isomorphism Although we came to the conclusion that scalability is not of

utmost importance, we still would like to implement a different algorithm for

handling tree data-structures as they may be present in many activities. As

discussed in the thesis, tree isomorphism can be solved in linear time which is

a clear benefit since the time complexity of our generic solution is exponential.

Point Distribution Weights The current point distribution method is based on a

naive approach. It simply counts the number of correct edges and compares

the values of two nodes that are connected using an edge. However, we

could think of giving nodes and edges some weights and then in a final step

divide the accumulated score with the sum of the weights. This implies

that some nodes and edges are more important and thus better rated. This

approach could be useful for instance in an UML activity where the teacher

can consider a part of the diagram as more difficult, and could therefore

annotate the nodes with a higher weight value to symbolize a dominance in

terms of point distribution.

Support for more learning materials We would like to support more types of

learning materials and thus enable richer content for teachers and students.

At the moment, web pages and PDF’s are available, but we can think of

video material, personal notes or any tabular sheets that could be useful to

students.

New activities in more domains Although we have tried to show the applicability

of our work in as different domains as possible, we still strive to achieve even

more diverse activity scenarios that could be based on our work. For the

moment, we are interested in mathematics, and would like to find out what

is possible and realistic in this realm in terms of activities.

Port to Server As for our proof of concept, we have chosen the iOS ecosystem as

our platform. However, teachers need to create activities in advance, usually

from a centralized location. Therefore, we plan to extend our current GSRS

system to support the meta-model with our three implemented use-cases.

Port to Android In order to reach as many users as possible, a port to the Android

operating system is inevitable and certain. The meta-model is realized using

nearly primitive types or classes from our own framework, which makes a port

very easy.

Open-Source Last but not least, an additional objective is to make our work

available as Open Source to enable a free distribution of the source code to

drive innovation.

48

APPENDIX . ABBREVIATIONS

List of Abbreviations

ALMA Adaptive Literacy-aware learning Material IntegrAtion

BCA Blood-Count Analysis

GoF Gang of Four

GUI Graphical User Interface

GSRS Game-based Student Response System

HTTP Hypertext Transfer Protocol

ITS Intelligent Tutoring System

OOP Object–Oriented Programming

REST Representational State Transfer

RQ Research Question

SoC Separation of Concerns

SoLeMiO Semantic Integration Of LEarning Material In Office

SRS Student Response System

UML Unified Modelling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

VPE Visual Programming Environment

49

50

BIBLIOGRAPHY

Bibliography

[1] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From Game Design El-

ements to Gamefulness: Defining ”Gamification”,” pp. 9–15, Proceedings of

the 15th International Academic MindTrek Conference, 2011.

[2] C. M. Barrio, M. Muñoz-Organero, and J. S. Soriano,“Can gamification im-

prove the benefits of student response systems in learning? An Experimental

Study,” pp. 429–438, IEEE Transactions on Emerging Topics in Computing,

2016.

[3] S. Freeman, S. L. Eddy, M. McDonough, M. K. Smith, N. Okoroafor,

H. Jordt, and M. P. Wenderoth, Active Learning increases Student Perfor-

mance in Science, Engineering and Mathematics. Proceedings of the National

Academy of Sciences (PNAS), 2014.

[4] Bunchball, Gamification 101: An introduction to the use of game dynamics

to influence behavior. Bunchball, Inc., 2010.

[5] C. Kevin,“A Future Full of Badges,”The Chronicle of Higher Education, April

2012.

[6] L. Hakulinen, T. Auvinen, and A. Korhonen, “The Effect of Achievement

Badges on Students’ Behaviour: An Empirical Study in a University-Level

Computer Science Course,” pp. 18–29, International Journal of Emerging

Technologies in Learning, 2015.

[7] C. Grévisse, J. Botev, and S. Rothkugel,“Yactul: An Extensible Game-Based

Student Response Framework for Active Learning,”XVIII Encuentro Interna-

cional Virtual Educa Colombia, June 2017.

[8] “Who and what is behind kahoot!.” https://kahoot.uservoice.com/

knowledgebase/articles/464890-who-and-what-is-behind-kahoot.

Accessed: 2018-07-28.

[9] C. Kelleher and P. Randy, “Lowering the Barriers to Programming: A Sur-

vey of Programming Environments and Languages for Novice Programmers,”

pp. 83–137, ACM Comput. Surv, 2005.

[10] P.-Y. Chao, “Exploring students computational practice, design and per-

formance of problem-solving through a visual programming environment,”

pp. 202–215, Computers & Education, 2016.

51

https://kahoot.uservoice.com/knowledgebase/articles/464890-who-and-what-is-behind-kahoot
https://kahoot.uservoice.com/knowledgebase/articles/464890-who-and-what-is-behind-kahoot

BIBLIOGRAPHY

[11] E. R. Sykes and F. Franek, “An Intelligent Tutoring System Prototype for

Learning to Program Java,”pp. 78–83, IASTED International Conference on

Computers and Advanced Technology in Education including the IASTED

International Symposium on Web-Based Education, July 2003.

[12] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and R. Pelletier, “Cognitive

Tutors: Lessons learned,”pp. 167–207, The Journal of the Learning Sciences,

1995.

[13] E. R. Sykes and F. Franek, “Growth and Maturity of Intelligent Tutoring

Systems: A Status Report,”pp. 100–144, Smart machines in education, 2001.

[14] “Chem Tutor: Learn with Visual Representations!.” https://chem.

tutorshop.web.cmu.edu/. Accessed: 2018-07-05.

[15] A. Gupta, A. Mittal, A. Karkare, S. Gulwani, A. Tiwari, and R. Majumdar,

“Chemistry Studio: An Intelligent Tutoring System,” pp. 9–15, Proceedings

of the 15th International Academic MindTrek Conference, 2011.

[16] S. Al-Imamy and J. Alizadeh,“On the Development of a Programming Teach-

ing Tool: The Effect of Teaching by Templates on the Learning Process,”

pp. 271–283, Journal of Information Technology Education, 2008.

[17] P. Kelsen, Q. Ma, and C. Glodt, “Models within Models: Taming Model

Complexity Using the Sub-model Lattice,” pp. 171–185, Part of the Lecture

Notes in Computer Science (LNCS) book series, 2011.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Elements of Reusable

Object–Oriented Software. Addison–Wesley Professional Computing Series,

2009.

[19] M. Bunge, Causality—The Place of the Causal Principle in Modern Science.

Harvard University Press, London, 1979.

[20] P. Harris, Special Relativity. CreateSpace Independent Publishing Platform,

2014.

[21] P. Foggia, C.Sansone, and M. Vento,“A Performance Comparison of Five Al-

gorithms for Graph Isomorphism,”pp. 188–199, Proc. 3rd IAPR-TC15 Work-

shop Graph-Based Representations in Pattern Recognition, 2001.

[22] R. Diestel, Graph Theory. Springer book – Graduate Texts in Mathematics

series., 5 ed., 2016.

[23] Z. Baida, T. Yuhua, W. Junjie, and X. Shuai, “LD: A Polynomial Time Al-

gorithm for Tree Isomorphism,” pp. 2015–2020, Procedia Engineering, 2011.

52

https://chem.tutorshop.web.cmu.edu/
https://chem.tutorshop.web.cmu.edu/

BIBLIOGRAPHY

[24] J. R. Ullmann,“An Algorithm for Subgraph Isomorphism,”pp. 31–42, Journal

of the ACM, 1976.

[25] G. Valiente, Algorithms on Trees and Graphs. Springer – AMC Computing

Classification, 3 ed., 1998.

[26] S. R. Buss, “A Logtime Algorithm for Tree Isomorphism, Comparison and

Canonization,” pp. 18–33, Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-

formatics), 1997.

[27] L. Kirsch, J. Botev, and S. Rothkugel, “Context-Based Authoring and Man-

agement of Documents,” pp. 2431–2441, In Proceedings of E-Learn: World

Conference on E-Learning in Corporate, Government, Healthcare, and Higher

Education, Oct 2013.

[28] C. Grévisse, R. Manrique, O. Mariño, and S. Rothkugel, “SoLeMiO: Seman-

tic Integration of Learning Material in Office,” in Proceedings of E-Learn:

World Conference on E-Learning 2018, Association for the Advancement of

Computing in Education (AACE), in press.

[29] A. F. Farhoomand and D. H. Drury,“Managerial Information Overload,”Com-

munications of the ACM, vol. 45, pp. 127–131, 7 2002.

[30] “Linked Data.” https://www.w3.org/DesignIssues/LinkedData.html,

2006. Accessed: 2018-07-21.

[31] C. Grévisse, J. Botev, and S. Rothkugel, “An extensible and lightweight

modular ontology for programming education,” in Advances in Computing

(A. Solano and H. Ordoñez, eds.), (Cham), pp. 358–371, Springer Interna-

tional Publishing, 2017.

[32] C. Grévisse, R. Manrique, O. Mario, and S. Rothkugel, “Knowledge Graphs

Enabled Automatic Semantic Representation to Improve the Retrieval of

Learning Resources,” in Proceedings of the 13th Colombian Conference on

Computing, Springer International Publishing, in press.

53

https://www.w3.org/DesignIssues/LinkedData.html

BIBLIOGRAPHY

54

APPENDIX . APPENDIX

Appendix

A Screenshots

Figure 1: Molecule Activity – The title page of our prototypical implementation.

55

A. SCREENSHOTS

Figure 2: Molecule Activity – Initially the from the template provided molecules
are randomly placed and a scale animation is run together with a sound effect to
simulate a pop-up.

Figure 3: Molecule Activity – Student has wrongly combined two oxygen atoms
with two chemical bondings.

56

APPENDIX . APPENDIX

Figure 4: Molecule Activity – The evaluation shows a missing hydrogen molecule
and colors the oxygen atoms red to illustrate an error.

Figure 5: Molecule Activity – The solution of a water molecule is presented.

57

A. SCREENSHOTS

Figure 6: Molecule Activity – One out of three patterns were recognized, namely
a bonding between two carbon atoms. The student receives an intermediate
feedback to highlight this achievement. The feedback consists of an animation
that pops up and fades out very fast to not disturb the student.

Figure 7: Molecule Activity – Two out of three patterns were recognized, namely a
bonding between a carbon atom and three hydrogen atoms. The student receives
an intermediate feedback to highlight this achievement. The feedback is based on
the number of achieved patterns.

58

APPENDIX . APPENDIX

Figure 8: Molecule Activity – Three out of three patterns were recognized, namely
a bonding between a carbon atom and three hydrogen atoms. The activity will
shortly terminate, in favour of the student so that no more time elapses that would
otherwise cause a point deduction.

Figure 9: Algo. Block Activity – The available statements on the right hand side
are provided through the tools relationship. The student needs to drag-and-drop
statements from right to left to create a control flow. The problem is about filling
the marmite with potatoes from the left barrow.

59

A. SCREENSHOTS

Figure 10: Algo. Block Activity – The student is dragging a while-loop into his
list of statements. The loop will show its content as soon as it is placed into the
list.

Figure 11: Algo. Block Activity – The content of the while-loop is now visible
and the student is dragging a condition into it.

60

APPENDIX . APPENDIX

Figure 12: Algo. Block Activity – The student has now finished his task and is
ready to submit.

Figure 13: Algo. Block Activity – The evaluation were successful.

61

A. SCREENSHOTS

Figure 14: Algo. Block Activity – The solution matches the student’s answer.

62

APPENDIX . APPENDIX

Figure 15: Algo. Block Activity – The evaluation were not successful since the
student has put both actions in the wrong order which is illustrated using a yellow
color.

Figure 16: Algo. Block Activity – Algo. Block Activity – The evaluation were not
successful since the student forgot one action statement which is depicted using
a red color. The missing element is injected using a gray color.

63

A. SCREENSHOTS

Figure 17: Blood Count Analysis Activity – The student needs to drag-and-drop
health-items to the right anatomy in order to influence the counts.

Figure 18: Blood Count Analysis Activity – As soon as the student drag-and-
drops all available health-items into the anatomy, the influences will start using
a timer. Positive or negative influences are depicted using a green or red arrow,
respectively.

64

APPENDIX . APPENDIX

Figure 19: Blood Count Analysis Activity – The student evaluation were not quite
successful and the framework colors the wrong items in red.

Figure 20: Blood Count Analysis Activity – The solution is shown using ranges of
accepted values.

65

A. SCREENSHOTS

Figure 21: Message alerting the student that the activity will be finished when
presenting learning materials since this could influence the result or score. The
message pops up after touching on red icon in the bottom left.

Figure 22: Learning materials for a molecule activity providing different links to
ontologies about chemistry.

66

APPENDIX . APPENDIX

Figure 23: A Browser displaying ChEBI entry for water. ChEBI is a website
implementing a dictionary of molecular entities and is backed by an ontology.

Figure 24: Learning materials in the form of PDF’s for an algo-block activity are
listed.

67

A. SCREENSHOTS

Figure 25: A PDF related to a programming course is presented to the student.

Figure 26: Dedicated HTTP Links can be opened using our app from everywhere in
the iOS platform. Our app then handles query parameters, etc., and the dedicated
task.

68

APPENDIX . APPENDIX

Figure 27: The SoLeMiO add-in in Microsoft PowerPoint lists all resources that
have been found for the particular lecture slides. Here, we have an URL and a
video resource as listed in the right hand-side. The URL encodes an activity and
will be opened by our dedicated app instead of the standard browser.

69

B. VIDEOS

B Videos

Some videos about the implemented activities, learning materials and universal

links are included in this section. Note that the videos cannot be played by every

pdf reader.

Video 1 Gameplay of a molecule activity.

(Video Content – Use any PDF viewer that supports embedded videos.)

70

gameplay-molecule-activity.mov
Media File (video/quicktime)

APPENDIX . APPENDIX

Video 2 Gameplay of an algo-block activity.

(Video Content – Use any PDF viewer that supports embedded videos.)

Video 3 Gameplay of a blood count activity activity.

(Video Content – Use any PDF viewer that supports embedded videos.)

71

gameplay-algo-activity.mov
Media File (video/quicktime)

gameplay-bca-activity.mov
Media File (video/quicktime)

B. VIDEOS

Video 4 Gameplay showcasing the usage of learning materials within activities.

(Video Content – Use any PDF viewer that supports embedded videos.)

Video 5 Gameplay showing the usage of universal links.

(Video Content – Use any PDF viewer that supports embedded videos.)

72

gameplay-learning-materials.mov
Media File (video/quicktime)

gameplay-universal-links.mov
Media File (video/quicktime)

APPENDIX . APPENDIX

Video 6 Gameplay showing the usage of universal links integrated in SoLeMiO.
The slides are indexed with semantic terms such as while-loop and mapped with
an URL resource, which points to a related activity.

(Video Content – Use any PDF viewer that supports embedded videos.)

73

gameplay-SoLeMiO.mov
Media File (video/quicktime)

B. VIDEOS

74

APPENDIX . APPENDIX

C Simulation study

0

5000

10000

15000

20000

25000

30000

35000

111

112

113

114

115

121

122

123

124

125

131

132

133

134

135

141

142

143

144

145

151

152

153

154

155

211

212

213

214

215

221

222

223

224

225

231

232

233

234

235

241

242

243

245

244

251

252

253

254

255

311

312

313

314

315

321

322

323

324

325

331

332

333

334

335

341

342

343

344

345

351

352

353

354

355

411

412

413

414

415

421

422

423

424

425

431

432

433

434

435

441

442

443

444

445

451

452

453

454

455

511

512

513

514

515

521

522

523

524

525

531

532

533

534

535

541

542

543

544

545

551

552

553

554

555

Times [ms]

Configurations

Figure 28: Benchmarking times – Time elapsed ordered in an ascending fashion
where the times are mean values computed from 30 independent runs. An iPad Air
2 were used as a test device. The configurations are written as (#H,#O,#C)T
where H is the number of hydrogen, O the number of oxygen and C being the
number of carbons. We can observe that the bigger the number of atoms become,
the more time it takes to compute. The combination of two or more high numbers
of atoms has a significant impact on the performance. The high peaks represent
exponential increases

75

C. SIMULATION STUDY

0

5000

10000

15000

20000

25000

30000

35000

111

112

113

114

115

121

122

123

124

125

131

132

133

134

135

141

142

143

144

145

151

152

153

154

155

211

212

213

214

215

221

222

223

224

225

231

232

233

234

235

241

242

243

245

244

251

252

253

254

255

311

312

313

314

315

321

322

323

324

325

331

332

333

334

335

341

342

343

344

345

351

352

353

354

355

411

412

413

414

415

421

422

423

424

425

431

432

433

434

435

441

442

443

444

445

451

452

453

454

455

511

512

513

514

515

521

522

523

524

525

531

532

533

534

535

541

542

543

544

545

551

552

553

554

555

Iterations

Configurations

Figure 29: Benchmarking times – Iterations ordered in an ascending fashion where
the values are means computed from 30 independent runs. An iPad Air 2 were
used as a test device. The configurations are written as (#H,#O,#C)T . One
iteration represents one execution of the algorithm 1. The high peaks represent
exponential increases.

76

APPENDIX . APPENDIX

77

	Abstract
	Contents
	List of Figures
	Introduction
	Background & Related Work
	Current GSRS
	Other Teaching Tools
	Teaching by Templates

	Chapter Conclusion

	Graph–Oriented Data Model
	Meta–Model
	Use–Cases
	Molecule Activity
	Algorithmic–Block Activity
	Blood Count Analysis Activity
	UML–Class Diagram Activity

	Graph Comparison
	Benchmark

	Student Evaluation
	Graph Properties & Optimization

	Integration of Learning Materials
	Incorporating learning materials into activities
	Linking activities with learning materials

	Conclusion
	Summary
	Future Work

	Abbreviations
	Bibliography
	Appendix
	Screenshots
	Videos
	Simulation study

