
Université du Luxembourg

Faculté des Sciences, de la Technologie et de la

Communication

Bachelor en informatique (professionnel)

Année académique 2015 – 2016

Mémoire de fin d’études

A Game-Based Student Response Framework for
Interactive Education – Back-End Services and

Administration

Auteur

Dren Gashi

Matricule

0130732528

Date

06/06/2016

Etablissement d’accueil

Université du Luxembourg

Responsable local

Dr. Jean Botev

Responsable académique

Prof. Dr. Steffen Rothkugel

Abstract

Lectures may not only be boring but also ineffective. A study found that

students enrolled in a traditional lecture are 1.5 times more likely to fail than

those enrolled in an active learning environment. The current generation of

students has grown up in a technological environment. Students often require

constant engagement to preserve the information covered during a lecture. To

solve this kind of problems, there exist game-based learning tools that have

great potential to motivate and engage students. However, current tools have

different limitations and shortcomings in various areas. We propose Yactul,

a new web-based learning platform that combines the best features of existing

systems, while adding new possibilities. Based on a modular architecture, our

tool allows adding new types of questions on the fly without writing a single

line of code. Having implemented a specific type of question or activity, it

can be exported as a web-archive and imported as a module in the application

server where Yactul is running. Next, the module can be paired via well-formed

REST-interfaces for communication. Modules may not necessarily be imported

due to a language-agnostic REST API and hence, can be written in any pro-

gramming language and run on any server in any location. We compare our

tool against exisiting popular web-based learning platforms. The results show

that our tool overcomes the limitations of the competitors while combining the

best features and add new possibilities. The backend of Yactul is deployed as a

GlassFish JavaEE application server connected to a MySQL database server.

The front end is purely written in HTML5 and JavaScript using WebSockets

as communication protocol.

Keywords: game-based learning, student response framework, back-end services, gam-

ification, Yactul

i

Les cours magistraux peuvent non seulement être ennuyeux, mais égale-

ment inefficaces. Une étude a constaté que les étudiants inscrits dans un

cours traditionnel sont 1,5 fois plus probable à échouer que ceux inscrits dans

un environnement d’étude actif. La génération actuelle des étudiants a grandi

dans un environnement technologique. Les étudiants nécessitent souvent de

l’engagement constant, afin de préserver l’information couverte pendant une

audience. Pour résoudre ce type de problèmes, il existe des outils d’études basés

sur jeux qui ont le grand potentiel de motiver et engager les étudiants. Cepen-

dant, les instruments courants ont différentes limitations et défauts dans divers

secteurs. Nous proposons Yactul, une nouvelle plate-forme d’étude basée sur

le web qui combine les meilleures caractéristiques des systèmes actuels, tout en

ajoutant de nouvelles possibilités. Basé sur une architecture modulaire, notre

outil a la particularité d’ajouter de nouveaux types de questions en marche

sans écrire une seule ligne de code. Après avoir déployé un type spécifique de

question ou d’activité, il peut être exporté comme un archive web et être im-

porté comme un module dans le serveur d’applications où Yactul fonctionne.

Consécutivement, le module peut être associé par l’intermédiaire des REST-

interface bien formés pour établir une communication. Les modules ne sont

pas nécessairement importés, grâce à REST, une langue-agnostique API et par

conséquent, peut être écrit dans n’importe quelle langue de programmation, dé-

marrant sur n’importe quel serveur dans un emplacement quelconque. Nous

comparons notre outil avec des plates-formes populaires existantes, basées sur

le web. Les résultats prouvent que notre outil surmonte les limitations des

concurrents tout en combinant les meilleures caractéristiques et en ajoutant

de nouvelles possibilités. Le back-end de Yactul est déployé comme serveur

d’applications de GlassFish JavaEE relié à un serveur de base de données

de MySQL. Le frontal de l’application est purement écrit dans HTML5 et

Javascript, en utilisant WebSockets comme protocole de transmission.

Mots-clés: student response framework, outil d’études basé sur jeux, services back-end,

ludification, Yactul

ii

Declaration of Honor

I hereby declare on my honor that I am the sole author of the present thesis.

I have conducted all work connected with the thesis on my own.

I only used those resources that are referenced in the work. All formula-

tions and concepts adopted literally or in their essential content from printed,

unprinted or Internet sources have been cited according to the rules for aca-

demic work and identified by means of footnotes or other precise indications

of source.

This thesis has not been presented to any other examination authority. The

work is submitted in printed and electronic form.

Luxembourg, June 2016

Dren Gashi

iii

iv

Acknowledgments

I would like to express my deep gratitude to my academic supervisor Prof.

Steffen Rothkugel for his excellent support and guidance during the period of

twelve weeks of my work. I am grateful for the constructive criticism which

always causes me to rethink and helped me to improve. I especially thank

him for his proposal of the topic for my Bachelor thesis, for his great efforts

for providing me an office in his work building where I could work and con-

sult him for advices, for organizing recurring meetings to discuss my progress

and last but not least for the motivating feedback on the results during live

presentations of the tool.

I would like to sincerely thank my local supervisor Dr. Jean Botev who has

supported me thoughout my thesis with knowledge and many suggestions to

improve my work. I especially thank him for his encouragement, for taking

the time to discuss my progress, for helping me to establish the concept for the

modular architecture of Yactul and for his detailed comments on my thesis.

Furthermore I would like to kindly thank Christian Grévisse. Despite of

not being one of my supervisors, he has always taken the time to help me

to investigate my code and to solve problems. Many thanks for providing an

admirable template for the thesis and helping me to establish the concept for

the modular architecture of Yactul.

Finally I would like to thank the following people for participating at each

meeting and providing constructive criticism and suggestions: Prof. Steffen

Rothkugel, Dr. Jean Botev, Dr. Johannes Klein, Christian Grévisse, Christian

Müller, Mike Pereira Gonçalves, Davide Belpassi, Joe Mayer and Maximilian

Biegel.

v

vi

CONTENTS CONTENTS

Contents

Abstract i

Contents viii

List of Figures x

1 Introduction 1

2 State of the Art 5

2.1 Existing Game-Based Tools . 5

2.1.1 Kahoot . 5

2.1.2 Quizizz . 6

2.1.3 Socrative . 7

2.2 Comparison . 7

2.2.1 Restrictions . 8

2.2.2 Gamification Aspects . 9

2.2.3 Conclusion . 9

3 Yactul 11

3.1 Modular Architecture . 11

3.1.1 Module-Pairing . 12

3.1.2 Server-Side Implementation 13

3.1.3 Web Services . 15

3.1.4 Client-Side Implementation 21

3.2 Message Flow . 22

3.2.1 Websockets . 23

vii

CONTENTS CONTENTS

3.2.2 Message Processing . 25

3.2.3 Playing a Quiz . 26

3.3 Testing and Validation . 29

3.4 Comparison with Current Tools 30

4 Conclusion 35

4.1 Summary . 35

4.2 Future Work . 36

Glossary 37

Abbreviations 39

Yactul – User Interface 41

Fiches de Suivi de Stage 45

Bibliography 59

viii

LIST OF FIGURES LIST OF FIGURES

List of Figures

1.1 Game-Mechanics – Human Desires 1

2.1 Kahoot – Teacher View . 6

2.2 Kahoot – Student View . 6

2.3 Quizizz – Teacher View . 6

2.4 Quizizz – Student View . 6

2.5 Socrative – Teacher View . 7

2.6 Socrative – Student View . 7

2.7 Comparison Table . 8

3.1 Modular Architecture . 12

3.2 Activities – UML Class Diagram 13

3.3 Quizzes – UML Class Diagram . 15

3.4 Modular Architecture – Web Services 16

3.5 IConcreteActivityREST – UML Class Diagram 17

3.6 Delegation – UML Sequence Diagram 19

3.7 Modular Architecture – Client UI 21

3.8 Modular Architecture – iOS & Student/Teacher Client 22

3.9 Websocket – Global Support Overview 23

3.10 Message Flow . 24

3.11 Abstract Command – UML Class Diagram 25

3.12 Commands Table . 26

3.13 UML Class Diagrams for Playing a Quiz 27

3.14 UML Sequence Diagram – Start Quiz Example 28

ix

LIST OF FIGURES LIST OF FIGURES

3.15 Comparison Table with Yactul . 33

1 Yactul – Logo . 41

2 Yactul – Teacher Administration 41

3 Yactul – Teacher Administration - Edit Quiz 42

4 Yactul – Teacher Administration - Activities 42

5 Yactul – Multiple Choice Question Module - Creation 43

6 Yactul – Teacher Administration - Play Quiz 43

7 Yactul – Student - Join Quiz . 44

8 Yactul – Teacher Administration - Start Quiz 44

x

CHAPTER 1. INTRODUCTION

1 | Introduction

Interactivity is not only important in classrooms but also for learning in

general. Students are interacting all the time but not with the important sub-

jects. During class, they interact on mobile devices, tablets or laptops. Teach-

ers must first capture the attention of the class to make a teacher-student

interaction even possible. Students often require such interactions in class-

rooms in order to stay focused. A study by Scott Freeman et al. [1] found

that students enrolled in a traditional lecture are 1.5 times more likely to fail

than those enrolled in an active learning environment. This is due to our

present generation which has grown up in a very technological environment.

An active learning environment is therefore crucial to build the basis for in-

teractivity. Current Student Response Systems (SRS) or also called Classroom

Response Systems (CRS) try to apply Gamification in classrooms to enhance

motivation. Gamification is the application of game-design elements and game

principles in non-game contexts [2].

Game-design elements, also known as game mechanics, are based on human

primary desires.

	
	

 Human Desires

Game
mechanics	

Reward Status Achievement Self
Expression Competition Altruism

Points •	
	 	 	 	 	

Levels 	 •	
	 	 	 	

Challenges 	 	 •	
	 	 	

Virtual Goods 	 	 	 •	
	 	

Leaderboards 	 	 	 	 •	
	

Gifting &
Charity

	 	 	 	 	 •	

Figure 1.1: Game mechanics - Human desires [3]

As we can see in figure 1.1 there are several aspects a human desires. Each

desire has a corresponding game mechanic. The black dots signify the primary

1

CHAPTER 1. INTRODUCTION

desire a certain game mechanic fulfills. The more game mechanics included,

the more gamification is applied.

The background for the choice for this theme is that gamification has the

potential to change the way of learning in a very positive manner. For instance,

an empirical study by Hakulinen et al. [4] where 281 students participated in

the experiment, shows that using game mechanics has a significant impact on

some aspects of students’ behavior. Students with more badges spent more

time per exercise, which suggests that they thought more about the problem

before submitting. Badges are a validated indicator of accomplishment, skill,

quality or interest that can be earned in various environments [5]. Trying to

combine game-like elements in learning can be the key of motivating people

and that’s exactly what we students want.

However, the current offer of learning platforms providing gamification is

quite small. The main reason for this is that the term gamification itself is

new. Current existing tools have different limitations and shortcomings in

various areas.

The research questions were:

RQ1 : How to build an extensible learning platform?

RQ2 : How to apply game mechanics in a learning platform?

RQ3 : How to overcome the limitations of current solutions?

RQ4 : How to combine the best features of existing systems while add

new possibilities?

In order to find answers to the questions, the project was split in three sub-

projects. Our solution consists of a web-based learning platform called Yactul,

which involves three parts: an iOS offline version, a client web front-end and

a server-side part.

This thesis concentrates on the server-side part of our tool. The most

important goal for this part was to build an extensible architecture which

allows adding new types of questions or activities on the fly and without

changing or adding a single line of code.

Example of activities which we came up are the following:

1) Simple Question: A question with at least two answers where only one

can be correct.

2

CHAPTER 1. INTRODUCTION

2) Multiple Choice Question: Same as Simple Question with the difference

that zero or more answers can be correct.

3) Simple Focus: A question with at least two answers where only one can

be correct and where the answers are sequently printed on the screen

with a flexible time-interval.

4) Multiple Choice Focus: Same as Simple Focus with the difference that

zero or more answers can be correct.

5) Point And Click: A question consisting of a text and a picture where a

user must click on specific regions on the picture to validate the question.

6) Ordering: A question consisting of a text and multiple answers where

the answers need to be put in a specific order to be correct.

7) Build Pairs: A question with multiple text where two strings belonging

together needs to be linked together to successfully validate the question.

8) Discussion: A question with a text containing the description of the

exercise where users can write answers.

These are only some examples we invented for our tool. As you can see

there is quite some heterogeneity among the activities. In order to handle all

possible activities, we made Yactul generic. The extensible architecture of our

tool allows linking of activities in order to be used in quizzes. A quiz can

be composed of several different types of activities. Activities are deployed

as separate and independent applications which can run either on the same

server as Yactul or in another. Due to using REST as language-agnostic API

for the communication, it is possible for instance to run Yactul on a server in

Luxembourg and the different activities to deploy each on a server in a different

location across the globe. We defined a well-formed interface between our tool

and the activitiy applications to build a basis for the communication layer.

We evaluated current popular web-based learning platforms to determine

the weaknesses or limitations. This evaluation was considered for building our

tool. The results of a detailed comparison highlight that our tool overcomes

the limitations and combines the best features while adding new possiblities.

The structure of this thesis is as follows. In section 2 the state of the art

of current popular CRS are presented. It follows a comparison in terms of

restrictions and gamification aspects between the tools. We end the chapter

with a conclusion. In section 3 we elaborate our proposed tool Yactul, it’s

extensible architecture, the message flow and a final comparison where we

include our tool. Finally we conclude in chapter 4 and present some details

about future work.

3

CHAPTER 1. INTRODUCTION

4

CHAPTER 2. STATE OF THE ART

2 | State of the Art

The current variety of learning tools providing gamification is quite small

since the word gamification itself was not coined until around 2002 by Nick

Pelling [6]. Only in the last years it has startet to get public attention.

In this chapter, some of current existing game-based learning platforms are

presented. Furthermore the tools will be compared in terms of restrictions and

gamification aspects.

2.1 Existing Game-Based Tools

All analyzed tools are web-based solutions. This is due to the most signifi-

cant advantage over native solutions: one can access the application through

any web browser, which makes the tool cross platform compatible. It is not

astonishing why most of the tools take the web-approach because a heteroge-

nous variety of devices exist in classrooms. It would be otherwise difficult to

create a tool that runs on any device. Among several existing solutions, three

major web-based learning platform are presented in the following.

2.1.1 Kahoot

The Kahoot platform is owned and funded from the Norwegian Research

Council in 2013. At the moment the tool is fully cost-free. However, in the

official Kahoot website they state that in the future Kahoot will offer some

added value services. Kahoot is the most popular platform out of the three

analyzed tools with more than 8 million [7] public quizzes.

Having created and started a quiz, the creator of the quiz gets a gener-

ated six-digit long numerical pin and can forward it to the participants. The

participants can next use the pin and use a nickname in order to join the quiz.

During a quiz, the question together with the remaining time and the num-

ber of already submitted answers is printed on the teachers’ screen/projector

and the participants can see the question for five seconds. Next, the possible

answers are shown in the screen of the teacher in different colors as illustrated

in figure 2.1. The students do not see the answers in textual form but rather

in rectangles with different background colors corresponding the one’s from

5

2.1. EXISTING GAME-BASED TOOLSCHAPTER 2. STATE OF THE ART

the projector view as seen in figure 2.2.

Figure 2.1: Kahoot – Teacher View Figure 2.2: Kahoot – Student View

2.1.2 Quizizz

Quizizz was founded in 2015 and hence is in it’s initial ages. Less than 10

[8] employees are in charge for the web-based learning platform. Similar to

Kahoot, people can create quizzes with multiple questions. In order to access

a quiz, students need to have the six-digit pin which is being generated at the

moment when the teacher starts the quiz. Unlike Kahoot, the students can see

the questions in their screen and don’t have to look to the teachers’ screen. The

UI-View of the teacher is waiting for the responses coming from the student’s

devices as seen in figure 2.3. In figure 2.4, the view of the student’s screen is

captured.

Figure 2.3: Quizizz – Teacher View

Figure 2.4: Quizizz – Student View

6

CHAPTER 2. STATE OF THE ART 2.2. COMPARISON

2.1.3 Socrative

The establishment of Socrative took place in 2011 [9] and therefore it is the

oldest out of the three web-based learning tools. The procedure of joining a

quiz is exact the same as shown previously for Kahoot and Quizizz with the

small difference that the pin does not only consist of a six-digit long numerical

number but it consists of a eight-digit long string containing numbers and

uppercase letters.

Figure 2.5: Socrative – Teacher View

Figure 2.6: Socrative – Student View

2.2 Comparison

The figure 2.7 lists the differences in terms of features and gamification

aspects between the three tools. To keep it simple, we only listed the best

features we thought about among the tools and added new functionalities

such as featues during a quiz which can be very useful in classrooms. More

details about particulars will be discussed in the following.

7

2.2. COMPARISON CHAPTER 2. STATE OF THE ART

Criteria

Classroom Response Systems
Socrative Kahoot Quizizz

Entering room pin pin pin
Multiple Choice P O O
Number of answers 2..* 2..4 2..4
Time limit per question O P P
User defined time limit O fixed range fixed range
Pause between questions O P O
Offline version Mobile App O O
Multiple question types O O O

During quiz
Modify time O O O
Pause/Resume question O O O
Change order of questions O O O
Modify question O O O
Disable question O O O

Gamification aspects
Points O P P
Levels O O O

Challenges O P O
Virtual Goods O O P
Leaderboards O P P

Gifting & Charity O O O

Figure 2.7: Comparison Table

2.2.1 Restrictions

In the table above we can see several restrictions or missing features marked

as red crosses. It is surprising that except Socrative, none of the tools support

multiple choice questions. The number of answers is also restricted to four in

two of the tools. All tools only support one activity, namely a textual question

with at least two answers where only one can be correct. This corresponds to

the ’Simple Question’ activity we listed in section 1.

The table also shows that the most restrictions are given in the criterias

listed under the section ’during a quiz’. None of the tools support such func-

tionalities. We believe that teachers need to have control over a running quiz.

Imagine a teacher realizes that the time for a particular question he has cho-

sen is not enough. Then, it would be appropriate if he has the possibility to

8

CHAPTER 2. STATE OF THE ART 2.2. COMPARISON

add more time so that students can take advantage of it. Another example

is when a teacher realizes that a particular question causes confusion among

the students. Pausing and resuming the quiz/question would be very suit-

able. Thereby the teacher can give additional explanations and then resume

the question and start in that state where it stopped. There can be of course

many more examples we can image. These are only a few we thought about

as most important.

2.2.2 Gamification Aspects

Both Kahoot and Quizizz support three out of six different game mechanics.

Kahoot supports a ’team mode’ which falls in the category Challenges and

Quizizz supports custom avatars which we can categorize into Virtual Goods.

We can also consider the time as a challenge since it produces a slight pressure

on the students. However, we think that a time per question is crucial and

is not directly a game element. Therefore it is not counted as a gamification-

aspect.

It is difficult to implement all six game mechanics while mainting the quiz

sensical. A potential hurdle may be a conflict between some game mechanics.

For instance, one can implement the Gifting & Charity mechanic as a feature

such that students can send points to each other in order to stay on a par.

However, the human desire Reward resulting from the points would suffer since

points could be easily obtained when some students work together. Therefore,

the implementation of game mechanics must be well choosen.

Socrative does not support any game mechanics. It is designed to be used

as a normal quiz system without any gamification aspect.

2.2.3 Conclusion

In this chapter we compared some classroom response systems. We showed

some similarities between the tools such as the idea of having a pin to access a

particular quiz. Next we compared the tools in terms of gamification mechanics

and restrictions. We saw that Socrative does not support any gamification

aspects. In the other hand both Kahoot and Quizizz implement three out

of six different game mechanics. However, Socrative is the only tool which

supports multiple choice questions and more than four answers for a question.

Socrative is hence a powerful tool which should be used when gamification

is not desired. Nonetheless, in our context, game-based learning plays an

important role.

9

2.2. COMPARISON CHAPTER 2. STATE OF THE ART

Whether having the question shown on the students screen or not is a more

pedagogical question. Kahoot does not show the on the student’s devices. In

the official website [10] of Kahoot, they state that they are not showing the

question and answers on the student screens because they believe that it has a

negative impact on social learning. The other two tools, however, are showing

both question and answer on the students’ devices.

The main drawback is that all compared tools only support ’Simple Ques-

tion’ activities. After all, the tools exist since several years, which might

suggest that the underlying architecture does not allow other types of ques-

tions and this is the main part which our proposed tool Yactul focuses on.

While trying to combine the best features listed above, Yactul also protopi-

cally rectifies the restrictions mentioned earlier.

We continue with the main chapter of this thesis which is Yactul and it’s

extensible architecture.

10

CHAPTER 3. YACTUL

3 | Yactul

The overall goal of our approach was to build an extensible architecture

which allows adding new activities on the fly without writing a single line of

code.

Contents

3.1 Modular Architecture . 11

3.1.1 Module-Pairing . 12

3.1.2 Server-Side Implementation 13

3.1.3 Web Services . 15

3.1.4 Client-Side Implementation 21

3.2 Message Flow . 22

3.2.1 Websockets . 23

3.2.2 Message Processing 25

3.2.3 Playing a Quiz . 26

3.3 Testing and Validation . 29

3.4 Comparison with Current Tools 30

In the next subsection, we describe each of the components used in the

modular architecture and the connection between different layers in more de-

tail. In section 3.2 we elaborate on the message flow between students and

teachers and in section 3.4 we compare our tool against the presented one’s in

the State-of-the-Art chapter.

3.1 Modular Architecture

In order to comply with the main research question on how to build an

extensible architecture to support different activities, we strived for a modular

approach. Alternatives such as monolithic applications consisting of tightly-

coupled code have been analyized as well. However, due to many advantages of

modular programming such as code reusability, program readability, manage-

able tasks, easier collaboration with othe programmers, etc. we have decided

to build a modular architecture. Yactul utilizes a language-agnostic API and

is designed as a microservice performing small tasks to facilitate a modular ap-

proach. We use a Representational State Transfer (REST) architecture style as

communication interface internally between some components and externally

11

3.1. MODULAR ARCHITECTURE CHAPTER 3. YACTUL

between our tool and an a module. A module represents an activity which is

a separate and independant application that can be linked with Yactul. The

communication is mainly based on delegation which we elaborate on section

3.1.3. The process of linking is described in more detail in section 3.1.1. In

figure 3.1, a global view of the architecture of our tool is illustrated.

Web Services

Client (UI)

Server
(Business Logic, Database)

<<embeds>>

Extensible Architecture

Admin VC

Model

Concrete Activity-specific Architecture

Model

Admin VC

Teacher
Student

Projector
VC

iOS
VC

REST WS

<<register>>

<<delegate>>

Teacher
Student

Projector
VC

iOS
VC

REST WS

Figure 3.1: Modular Architecture

Our modular architecture is shown on the left-hand side and a general

architecture of a module is illustrated on the right-hand side. Each activity

must respect this architecture in order to be paired with our application.

3.1.1 Module-Pairing

The linking process between a module and our application is done by regis-

tration. We store three crucial information about the module in our database.

First of all, we store the base URL of the REST of a module for communication

purposes. Secondly we also store the name of the activity for identification

purposes and in order to fetch it’s base REST-URL when given an activity.

Lastly the URL of the administration page where the teachers can perform

CRUD operations on activities is also stored in the database. The registration

process is done by an administrator of our tool. Teachers cannot register new

activities but rather use instances of new activities as soon as they have been

registred. In the following, an example of a registration entry in our database

is listed.

activityname

url

creationurl

SimpleQuestion

http://localhost:8080/SimpleQuestion/rest/crud/

http://localhost:8080/SimpleQuestion/

The url value is used for delegating requests to the specific REST web ser-

vice of a module. The creationurl is used for embedding the Administration

12

CHAPTER 3. YACTUL 3.1. MODULAR ARCHITECTURE

View Controller (Admin VC) of a specific module into the Admin VC in our

application.

We can also import the modules in the server where Yactul is running. This

can be done either in the admin console of the server or by copying the module

application in an auto-deployment folder.

3.1.2 Server-Side Implementation

In this chapter we will focus on the database of the backend of Yactul. The

most part of the business logic is spread over the web services and websockets

which are described in section 3.1.3 and 3.2 respectively in more detail. We use

the world’s second most used [11] and the most popular open source relational

database MySQL as Database Management System (DBMS).

As described in chapter 1, we have invented some activities with their own

attributes. However, we noticed that some of the activities have common char-

acteristics but others are very heterogeneous. After some analysis about what

are the crucial attributes each activity should or must have and some con-

ceptualization, our solution consists of a model as illustrated in the following

UML Class Diagram.

Activity
- id : Int
- name : String
- description : String
- category : Collection<String>
- time : Int
- difficulty : Int

- text : String
- entries : Collection<String>

Discussion

- text : String
- answers : Collection<String>

MultipleChoiceFocus

- solutions : Collection<String>

- text : String
- imagePath : String

PointAndClick

- solutions : Collection<Point>

- text : String
- answers : Collection<String>

SimpleQuestion

- solution : String

- text : String
- answers : Collection<String>

MultipleChoiceQuestion

- solutions : Collection<String>

- text : String
- solution : String

BuildPairs

- text : String
- solutions : Collection<String>

Ordering
- text : String
- answers : Collection<String>

SimpleFocus

- solution : String

Figure 3.2: Activities – UML Class Diagram

Each new Activity Java class must extend from the parent class Activity.

We declare all Activity Java classes as Java Entities. Entities can be persis-

13

3.1. MODULAR ARCHITECTURE CHAPTER 3. YACTUL

tantly stored and represent a model for the tables in the database. Using the

Database Schema Creation feature1 of the persistence provider, we can enable

an automated creation of the database tables based on the entities on the de-

ployment of an application. Hence we do not need to write any SQL-commands

for creating tables and relations whenever a new activity is created. Note that

the activity subclasses are not stored in the server-side of our tool but rather

in separate modules. The parent class itself only provides a template to be

used in each module. When using Inheritance in combination with entities, an

Inheritance Mapping Strategy2 must be defined in the parent class. We use the

Joined Entity Inheritance Mapping Strategy3 because it is the most efficient

in terms of storage. Using this strategy, the parent class is represented by a

single table and each subclass has a separate table that contains only those

fields specific to that subclass and a primary key which is used as foreign key

to make a relation to the parent table. The SINGLE_TABLE strategy stores all

classes into a single table with as many columns or fields as distinct attributes

exist. So when an entity is being stored, the columns which are not part of

the entity will be filled with null values what we certainly wanted to avoid.

The TABLE_PER_CLASS strategy is similar to the JOINED strategy except that

the parent class is not created as a table but all properties of the subclasses

including the inherited one’s are mapped to columns in the class’s table in the

database.

Due to applying polymorphism and when selecting activity-specific data in

the database, the Java Persistance API needs a way to differentiate between

a row representing an object of one class and a row representing an object of

another. Therefore, the JOINED strategy provides a supplement DTYPE prop-

erty in the parent class. It is a so-called Discriminator Column which stores

the name of the subclass of an activity and determines what class of object

each row in the database table represents.

In the following figure we illustrate a conceptualization for managing quizzes.

1Set the property <property name="eclipselink.ddl-generation" value="create-

tables"/> in the persistance deployment descriptor to enable.
2There exists three types of strategies: SINGLE_TABLE, JOINED or TABLE_PER_CLASS
3Achieved with writing @Inheritance(strategy=InheritanceType.JOINED) above the

class declaration.

14

CHAPTER 3. YACTUL 3.1. MODULAR ARCHITECTURE

Activity
- id : Int
- name : String
- description : String
- category : Collection<String>
- time : Int
- difficulty : Int

- text : String
- answers : Collection<String>

MultipleChoiceFocus

- solutions : Collection<String>

- text : String
- answers : Collection<String>

SimpleQuestion

- solution : String

- text : String
- answers : Collection<String>

MultipleChoiceQuestion

- solutions : Collection<String>

- text : String
- answers : Collection<String>

SimpleFocus

- solution : String

Quiz
- id : Int
- name : String
- description : String
- activities : Collection<Activity>

Quizgroup
- id : Int
- name : String
- quizzes : Collection<Quiz>

1..*

0..* contains

belongs to

0..*

1..*

Figure 3.3: Quizzes – UML Class Diagram

We created the Java entities Quiz and Quizgroup. The Quiz class can

be seen as a container for activities and the Quizgroup entity represents a

container for quizzes. For example, a teacher creates two quizzes with the

name ”Operating Systems 2 - week 1” and ”Operating Systems 2 - week 2”.

Of course there can be many more quizzes associated with several lectures. In

order to group quizzes associated with the same lecture, the teacher can create

a group of quizzes (Quizgroup) called ”Operating Systems 2” and put all the

quizzes belonging together in the that Quizgroup.

Whenever a query on the Quiz table is executed, the hole collection of

activities will be fetched as well and one can access them via the property

activities. However, due to missing subclasses we cannot get instances of

concrete activities since they are stored in the modules outside our application.

Hence, the collection of activities in a Quiz object will be empty. We solve

this problem by delegation which is described in following section.

3.1.3 Web Services

The layer of the web services represents the middleware between the clients

and the server. It also builds an interface for communicating with modules.

All local or external requests go through the web services layer. For security

reasons, we use prepared statements on the parameters coming from the re-

quests to avoid SQL-injection. We establish an injective mapping from our

REST web service to the REST interface of an activity when pairing our tool

15

3.1. MODULAR ARCHITECTURE CHAPTER 3. YACTUL

with a module. Whenever information about a particular activity is required,

a request is delegated from our REST web service using it’s corresponding base

REST-URL in the registration entry to the activity application which in turn

sends a response in JSON data format containing the required information.

We agreed on JSON as a standard data format for all responses in REST-calls.

The responses will be forwarded to the student/teacher-view of the module’s

client-side through websockets. This approach is elaborated in section 3.2. In

figure 3.4 a more detailed architecture focused on the web services layer is

illustrated.

Well-formed REST Interfaces

Web Services

Client (UI)

Server
(Business Logic, Database)

<<embeds>>

Extensible Architecture

Admin VC

Model Model

Admin VC

REST WS

<<register>>

<<delegate>>

Teacher
Student

Projector
VC

iOS
VC

Generic
REST WS

Concrete Activity-specific Architecture

Resource REST WS

<<IConcreteActivityREST>>

Figure 3.4: Modular Architecture – Web Services

There are many cases when we need to fetch activity-specific data. For

instance all activity has another view. This information is also fetched via

delegation and the response is directly forwarded to the client-side which

then renders the view accordingly. Another example is the evaluation of a

question. For each activity the evaluation process might be different and

hence is computed on the server-side of the module. Since there are many

other purposes for requesting activity-specific data, we need a well-formed

interface between the REST service of our tool and all the other REST ser-

vices from the modules. The result of our analysis consists of a Java inter-

face (IConcreteActivityREST.java) which is implemented by all REST Java

classes of all activities. This interface provides common methods for querying

data. At the moment there are several CRUD methods and some methods for

communicating with the client-side UI such as showing a particular question,

showing the solution together with some statistics and finally evaluating the

responses from the students for a specific question. We provide an UML Class

Diagram of the interface in the figure 3.5.

16

CHAPTER 3. YACTUL 3.1. MODULAR ARCHITECTURE

<<interface>>
IConcreteActivityREST

@GET
@Path(“/get“)
@Produces(MediaType.APPLICATION_JSON)
+ Response getActivity(@QueryParam(“id“) Integer id);
@GET
@Path(“/get/all“)
@Produces(MediaType.APPLICATION_JSON)
+ Response getAllActivities(@QueryParam(“category“) String c);

@GET
@Path(“/del“)
@Produces(MediaType.APPLICATION_JSON)
+ Response deleteActivities(@QueryParam(“id“) Integer id);

@GET
@Path(“/get/cmd/show“)
@Produces(MediaType.APPLICATION_JSON)
+ Response getShowCommand(@QueryParam(“id“) Integer id);

@POST
@Path(“/add“)
@Consumes(MediaType.APPLICATION_JSON)
@Produces(MediaType.APPLICATION_JSON)
+ Response add(String jsonString);

@POST
@Path(“/get/cmd/show/solution“)
@Consumes(MediaType.APPLICATION_JSON)
@Produces(MediaType.APPLICATION_JSON)
+ Response getShowSolutionCommand(String jsonString);

@POST
@Path(“/eval“)
@Consumes(MediaType.APPLICATION_JSON)
@Produces(MediaType.APPLICATION_JSON)
+ Response eval(String jsonString);

Figure 3.5: IConcreteActivityREST – UML Class Diagram

The first four methods provided in the interface are performing CRUD

operations. Reading and deleting an object is done via HTTP GET calls.

Creation of an instance takes place via POST method since we do not know the

exact parameters for a GET invocation for each activity in the run. Providing

simply a JSON String as parameter, allows us to bundle all parameters for

a creation of an instance in one object. The parsing into an object and the

interpretation of the JSON string is done specificly in each implementation.

The methods getShowCommand and getShowSolutionCommand are used to

build the JSON object to be sent to the clients where the interpretation and

rendering of a particular activity is done. Finally, the eval method takes

a JSON string corresponding to the submission of a student. It is used to

evaluate the submission data and to return a JSON containing a local score

which will be adjusted in the server side of Yactul.

With regard to the web service layer of our tool, we created two RESTful

Java classes to seperate the different tasks between local requests and external

requests. The local one’s go through the Resource-REST and the external

17

3.1. MODULAR ARCHITECTURE CHAPTER 3. YACTUL

requests are forwarded from the Resource-4REST to the Generic5 REST. The

REST web service in the module implements the IConcreteActivityREST

interface and therefore the Generic-REST knows how to build the URL cor-

responding to a specific request.

Delegation

The delegation process enables our microservice to concentrate only on

performing local tasks whether module-specific tasks are being hand off. Del-

egation is always done when more data as given in the parent activity class

is needed. This is clearly the case during a quiz which is composed of several

activities because their subclasses are not stored in the backend of our tool.

The most important information which is needed for the delegation is the id

of an activity and the purpose of delegation. The id is used to fetch the needed

base URL for the REST-call and eventually to be passed as GET parameter.

The purpose of delegation is required for contructing the rest of the URL. It

follows an example:

http://localhost:8080/SimpleQuestion/rest/get?id=413

The id is used to find the activity in the database. We can then read

it’s type – in this example ”SimpleQuestion” – and query the REST-URL

corresponding to the activity from the database. The purpose for the request

terminates the URL with the corresponding method invocation. Here we want

to retrieve an activity of type SimpleQuestion with an id of 413.

On the server-side of Yactul, we cannot instantiate the fetched activities in

a quiz due to missing subclasses. The subclasses are completely unknown in

our server. The Java Persistance API (JPA) tries to directly instantiate an

object based on a query result. Therefore, we use native SQL-queries to fetch

the id’s of activities for a certain quiz. For each activity-id, we request the

activity instance represented in JSON data format from the REST interface

corresponding to the activity. The result is being forwarded to the initial

requestor without interpretation. It follows an UML Sequence Diagram for

illustration.

4We call it Resource-REST because it accesses the model which is a representation of a
resource.

5Generic because it can handle any activity-specific data which is completely unknown.

18

CHAPTER 3. YACTUL 3.1. MODULAR ARCHITECTURE

iOS Client Resource
REST

Generic
REST

Yactul
Concrete
Activity
REST

request Quizgroup x
query quizzes used in x

response:
All Quizgroups in JSON format

Module

query activity-id’s used in q

getConcreteActivityBy(a) delegate to

activity in JSON representation

RESTURL/get?id=a

forward JSON

append to activity-collection

loop: for each activity-id a

loop: for each quiz q

append to quiz-collection

Figure 3.6: Delegation – UML Sequence Diagram

A mobile client requests a specific group of quizzes x via REST. Here x

represents an id of a concrete Quizgroup instance. The Resource-REST queries

all the quizzes from the database which are used in x. However, the collection

of activities in the Quiz instances remains empty. Having the quizzes, we can

hence query only the activity-id’s which are used in those quizzes to avoid

querying instances of activities. For each activity-id, the Generic-REST sends

a request to the REST web service of the module associated with the activity.

The needed REST-URL is queried by matching the dtype of the activity with

the activityname column from the registredrest table. The result consisting

of an activity in JSON data format will be stored in a list. This process is

repeated as long there are quizzes remaining. Finally the requested Quizgroup

with quizzes will be sent in JSON format together with the corresponding

activities.

Showing the UI of an Activity

The teacher can start a quiz and this will trigger the rendering of the first

activity at client-side. Since the activities are completly unknown, the render-

ing information is stored in the modules. Because of that, we use delegation to

get the rendering information as JSON representation and send the result to

the clients which will perform the interpretation and the drawing. The show-

ing procedure is implemented via the method getShowCommand we provided

19

3.1. MODULAR ARCHITECTURE CHAPTER 3. YACTUL

in the interface as illustrated in figure 3.5.

Score Evaluation

The evaluation process of an activity is also done via delegation. Each

activity-specific REST implements an evaluation method which takes as pa-

rameter a JSON in String format. This JSON is coming from the students

when finishing a question. The answer will not be interpreted in the server-side

of Yactul but rather delegated to the activity-specific REST. The evaluation

method returns a score where 0 ≤ score ≤ 2. We defined that a correct submis-

sion leads to 1 and the other remaining point is calclulated with consideration

of some other factors such as the remaining time, the difficulty of the activity,

etc. The final score well be, however, computed in our tool by simply multi-

plying the score coming from the evaluation with a fixed constant which can

be easily configured in the server. This seperation of the score calculation has

the advantage, that one can change the upper-bound for the score. We are

using 1000 as fixed score, so the students can get 2000 points at best for each

question. If another university wish to use small numbers, they can adjust the

fixed score constant.

Showing the Solution of an Activity

Similar to the part of showing the UI of an activity, the procedure of showing

the solution also uses delegation to fulfill this purpose. The solution is normally

shown at the end of an activity together with a personalised statistics, that

is, the chosen answer(s) of the student, the solution(s) and for each answer,

the total number of students who selected that answer. Because we cannot

interpret the submission, the hole statistics calulcation need to be performed

in the part of the modules. We solve this by collecting the JSON submissions

from the students and putting them together with the corresponding session-

id to identify the student. Having collected all answers for one activity, the

answers in form of an JSON array are sent via delegation to the REST of the

module corresponding to the activity. The module performs the counting for

the statistics and for each JSON answer, it creates individually for each student

another JSON object containing the information for the solution. Each JSON

solution object is redirected to corresponding student given by the session-

id which were collected in the beginning of the submission. The solution

procedure is implemented via the method getShowSolutionCommand in the

interface IConcreteActivityREST as illustrated in figure 3.5.

20

CHAPTER 3. YACTUL 3.1. MODULAR ARCHITECTURE

3.1.4 Client-Side Implementation

The client layer of our architecture consists of three parts: the Adminis-

tration View Controller, The Student/Teacher View Controller and the iOS

mobile application. The Student/Teacher-VC is responsible for rendering the

UI of a specific activity. It also handles user interaction such as touches, send-

ing answers, etc. The Admin VC is used by the teachers to perform CRUD

operations on quizzes and activities. Teachers have the possiblity to manage

quizgroups, quizzes and activities. In order to modify a specific activity, the

Admin VC from the corresponding module is embedded. The teacher has thus

the possibility to perform any desired modification on an instance of an activ-

ity since he is now at the client-level in the module application as illustrated

in the following figure.

Client (UI)

<<embeds>>

Part of Extensible Architecture

Admin VC Admin VC

Teacher
Student

Projector
VC

iOS
VC

Part of Concrete Activity-specific Architecture

Figure 3.7: Modular Architecture – Client UI

We implemented the embed functionality as a redirection. The teacher will

hence be redirected to the administration web page of a module when he clicks

on an activity that he would like to modify. Since the teacher is not anymore

in the Yactul application, he can make use of any functionality provided by

the module. When finishing the modification of an activity, the teacher can

return to our tool.

The mobile clients access data via REST as shown in the figure 3.8. The

REST web service delegates the request to the corresponding module applica-

tion and forwards the result to the iOS client. The exact Java subclass as used

in the module needs to be written in the mobile clients in the corresponding

programming language as well in order to be casted from the fetched data

using the discriminator value into activity instances for further treatement.

Same for the Student/Teacher-VC because it needs to know the model to ac-

cordingly render the corresponding UI. Note that the iOS VC represents the

same client.

21

3.2. MESSAGE FLOW CHAPTER 3. YACTUL

Web Services

Client (UI)

Server
(Business Logic, Database)

iOS Client - Yactul

Model Model

<<delegate>>

iOS
VC

REST WS REST WS

iOS
VC

Teacher
Student

Projector
VC

iOS & Student/Teacher Client - Module

Figure 3.8: Modular Architecture – iOS & Student/Teacher Client

The students and the teachers communicate through websockets instead of

REST. This process is elaborated in the following section.

3.2 Message Flow

Besides the modular architecture, the message flow during a quiz is a major

aspect in our tool. Both teachers and students are clients and do not commu-

nicate directly with each other but rather through the server. We analyzed

the tools described in the state of the art and both Kahoot and Quizizz are

using WebSockets as communication protocol. Socrative in the other hand

is using a HTTP persistent connection, also called HTTP keep-alive. Both

techniques support a persistent connection. However, the key difference is

that HTTP keep-alive still follows the HTTP request-response schema but

an opening websocket setups a full-duplex connection which makes a request-

response protocol unnecessary. In order to allow that teachers can push data

to the students – which is obviously needed during a quiz – and to reduce the

overhead of request-response messages, we decided to use WebSockets as com-

munication protocol which are quite popular and supported by many browsers

as seen in figure 3.9 [12].

22

CHAPTER 3. YACTUL 3.2. MESSAGE FLOW

 Global: 87.17% + 0.48% = 87.65%

Internet
Explorer Edge Firefox Chrome Safari Opera iOS Safari Opera

Mini
Android
Browser

 29
 45 4.3
8 48 8.4 4.4
9 45 49 9 36 9.2 4.4.4
11 13 46 50 9.1 37 9.3 8 50
 14 47 51 38
 48 52 39
 49 53

Figure 3.9: Websocket – Global Support Overview

3.2.1 Websockets

Both students and teachers communicate through websockets. For simplic-

ity and code management reasons, we separated the endpoint where clients

open a websocket connection into two endpoints: one for the teachers and one

for the students. The tools presented in the State-of-the-Art chapter require

a pin to open a connection and then the system is asking for a nickname. We

thought about to combine these steps and therefore when attempting to open

a connection, the students must provide a nickname and a pin. The teachers

in the other hand only need to provide a username. We differentiate here

between nickname and username since teachers have an account and therefore

can login into our system and students are anonymous with no account. As

mentioned above, the teachers do not communicate directly with the student.

The communication flow passes through the server where the messages are

being processed and forwarded. The message flow is illustrated in the figure

3.10.

23

3.2. MESSAGE FLOW CHAPTER 3. YACTUL

Communication
Interfaces

Client (UI)

Server
(Business Logic, Database)

Message Flow

Message Processing

Student
VC

WebSocket Student Endpoint

Teacher
VC

WebSocket Teacher Endpoint

Figure 3.10: Message Flow

Websockets can send objects or literals. We use the same data format as for

the REST communication, that is JSON, because it is very lightweight and has

build-in support in JavaScript which is heavly used in the Student/Teacher-

VC for rendering the UI and for the websocket message handling at client

side. At the client-side, a JSON object is parsed as a string literal and is sent

through the websocket object. At server-side, the message is captured in the

websocket endpoints and a JSON object is contructed or parsed based on the

string representation. For security reasons, the incoming inputs are properly

escaped to avoid both HTML code and XSS JavaScript attacks.

After providing a pin and a nickname, the websocket enpoint for students

processed the message. This includes checking if a quiz corresponding to the

entered pin exists, whether the nickname already exists for the quiz, etc. Dur-

ing a quiz, the teacher can send messages such as showing a question, showing

the solution of a question, etc. which are being redirected to the students

participating to the corresponding quiz. Students also communicate with the

teacher for instance by answering questions.

The websocket endpoints can be considered as interfaces between the server

and the clients. All incoming messages go through the endpoints. They also

handle opening requests and closing procedures. In order to avoid putting

all the code for the message processing inside the websocket endpoints, we

encapsulated the business logic into several objects. The websocket endpoint

classes are thus very lightweight and delegate the tasks to specific objects

which handle the further treatement of the message. In the following section,

we present how those objects work and how to easily add new objects for

handling new tasks without changing code in the core application.

24

CHAPTER 3. YACTUL 3.2. MESSAGE FLOW

3.2.2 Message Processing

During a quiz, there are a lot of messages floating around. Each instruction

from the teacher requires a message or even each answer from the students also

requires a message to be sent. We thought about the messages as intructions

for the server. For instance, a teacher can start, end, pause or resume a

quiz. Students in the other hand can send answers to questions which also

can be seen as an instruction because the server needs to understand the

message, evaluate it and notify the teacher. Therefore we came up with a

concept consisting of an abstract class called Command with a property cmd

to be used as an unique key and a abstract process method for processing the

message given as parameter. In the figure 3.11 an UML Class Diagram of the

presented Command class is illustrated.

. . .

Command

- cmd : String

+ getCmd(): String
+ setCmd(cmd : String) : void
+ process(json : JSONObject) : void

ConcreteCommandN

+ ConcreteCommandN(cmd : String)

ConcreteCommand1

+ ConcreteCommand1(cmd : String)

CommandProcessor

- commands : Map<String,Command>

+ getCommand(cmd : String): Command
+ register(cmd : Command) : void

registers

Figure 3.11: Abstract Command – UML Class Diagram

The commands are being registrated by the Command-Processor as soon

as the application starts. The Command-Processor Singleton object can be

seen as a container for the commands. It uses a HashMap of key-value pairs

for accessing a command object by it’s property cmd. The registration allows

adding as many distinct commands as needed. The command object will be

stored as a value and the String property cmd will be used as a key in the

HashMap of the Command-Processor. Whenever a message as JSON-String

arrives in the websocket endpoint, the injected Command-Processor invokes

the process method of the command accessed by the cmd key which is read from

the message. The business logic for the corresponding instruction is outsourced

from the websocket endpoint and encapsulated in the process method of a

command.

25

3.2. MESSAGE FLOW CHAPTER 3. YACTUL

In the figure 3.12, some Command classes are listed together with a small

description about the business logic in the process method.

	

	

Command Business Logic of process method

From students

WebSocketConnectCommand

This command processes opening connection attempts. It
handles some verification routines such as checking if an open
quiz exists with the given pin, if the username is not already
taken, etc. If all test cases pass, an instance for the student is
created and added in the system to maintain it’s connection. If
not, appropriate messages are sent back.

GroupNameCommand
The process method of this command handles incoming
messages when students have chosen a groupname. The
groupname will be associated with the student in the system.

SubmitCommand

This command is the most important arriving from the
students. The process method is being invoked when students
finish an activity. The evaluation process will be done from
here via REST using delegation.

From teachers

StartQuizCommand
When the teacher starts a quiz, this command will be
processed. It send a JSON message to all the students which
causes to render the first activity.

EndQuizCommand
The processing of this commands ensures that an open quiz
closes. This closing implies that all the open websockets of
students will be closed as well.

GroupModeEnableCommand
This command enables the group-mode for a particular quiz.
Hence, the students are asked to enter a groupname for
collaborative playing.

UpdateCommand
The Update-Command is used to perform real-time changes
such as adding or removing time or pausing or resuming the
activity/quiz.

ShowSolutionCommand
The processing of this command results in showing the solution
of the current activity to the students. The solution
information is fetched via delegation.

DisableActivityCommand The teacher has the possibility to disable or enable an
particular activity via this command.

Figure 3.12: Commands Table

3.2.3 Playing a Quiz

In the following UML Class Diagram we illustrate some important Java

classes which are involved during the procedure of a quiz.

26

CHAPTER 3. YACTUL 3.2. MESSAGE FLOW

WebSocketClient
- session : Session
- nickname : String
- groupname : String
- score : Int

QuizPlayer
- quizId : Int
- activityIds : List<Int>
- room : Room

Room
- pin : String
- creator : WebSocketClient
- started : Boolean
- groupmode : Boolean
- clients : Map<String,WebSocketClient>

+ Room(creator:WebSocketClient, pin:String)
+ addClient(client:WebSocketClient) : Boolean
+ hasClient(client:String) : Boolean
+ hasClient(client:Session) : Boolean
+ removeClient(client:Session) : void
+ removeClient(client:String) : void
+ assignClientToGroup(client:Session, group:String) : void
+ removeGroup(groupname:String) : void
+ close() : void
+ getClientBySessionId(id:String) : WebSocketClient
+ startQuiz(quizId:Int, activityIds:List<Int>) : void
+ updateActivities(activityIds:List<Int>) : void
+ addScoreForClient(s:Session, score:Int) : void

/* getter & setter */

<static>
RoomManager

 - rooms : Map<String,Room>

 - RoomManager()
+ createRoom(creator:WebSocketClient) : String
+ generatePin(digits:Int) : String
+ removeClient(s:Session) : void
+ getRoomByClient(s:Session) : Room
+ addClientToRoom(c:WebSocketClient, pin:String) :
Room
+ getRoomByPin(pin:String) : Room

+ existsRoom(pin:String) : Boolean
+ closeRoom(r:Room) : void

+ getRoomByCreator(c:WebSocketClient) : Room

+ setGroupnameForUser(s:Session,name:String) : void
+ setGroupmodeByCreator(s:Session,mode:Boolean) : void
+ getGroupmodeByCreator(s:Session) : Boolean
+ existsClientForRoom(nickname:String, pin:String) :
Boolean
+ startQuizByCreator(s:Session, quizId:Int,
activityIds:List<Int>) : void
+ getGroupmembersByGroupname(c:Session,
name:String) : List<String>

/* getter & setter */
ScoreBoard

- clients : List<WebSocketClient>

+ sort(localClients:List<WebSocketClient>)
+ generateShowHighScoreJSON() : JSONObject
+ generateUpdateHighscoreJSON() : JSONObject

/* constructor, getter & setter */

- scoreBoard : ScoreBoard
- collectedStudentAnswers : Map<Int,ActivityAnswerCollector>

+ QuizPlayer(r:Room, quizId:Int, activityIds:List<Int>)
+ play() : void
+ getJSONCommandForActivity(dtype:String, id:Int) : String
+ getSolutionCommandsForActivity(dtype:String,
jsonArrayFromStudents:String) : String
+ collectStudentAnswer(sessionId:String, json:String) : void
+ showSolution() : void
+ getDtypeByActivity(id:Int) : String

/* getter & setter */

ActivityAnswerCollector
- activityId : Int
- studentAnswers : List<Map<String,String>>

/* getter & setter */

Figure 3.13: UML Class Diagrams for Playing a Quiz

Students who are joining a quiz with the right pin are stored in WebSock-

etClient instances. This class encapsulates most importantly the websocket

session object which is needed for sending and receiving messages. As soon

as a teacher opens a quiz, the static RoomManager creates an instance of a

27

3.2. MESSAGE FLOW CHAPTER 3. YACTUL

Room. A Room instance represents a virtual Room where the quiz takes place.

The return value of this procedure is a pin which the teacher can forward to

the students in order to be able to join. The RoomManager can be seen as

a facade for manipulating Room objects. When the teacher starts the quiz,

an instance of QuizPlayer is created which handles the further process. The

QuizPlayer also communicates with the local REST instances to make use

of delegation. For instance, the method getJSONCommandForActivity sends

a request to the Generic-REST to get the corresponding JSON command to

trigger the rendering of a specific activity in the students’ screen. The Score-

Board class is used to represent the Highscore in the teacher’s screen. It holds

a local list of the current students which is being updated and sorted in de-

scending order every time when a student submits an answer. Hence, the

highscore is shown in real time. The ActivityAnswerCollector stores all the

answers from the students for an activity. This is needed for the evaluation

and for the statistics. The ActivityAnswerCollector only stores answers for a

single activity. The QuizPlayer holds a HashMap of activity-id as a key and

an ActivityAnswerCollector instance as value and thus, can store statistics for

multiple activities. This HashMap can then be used for persistantly storing

the statistics of a quiz.

In the following UML Sequence Diagram, we illustrate an example on how

the several classes cooperate when the teacher starts the quiz.

Message Processing

Student VC
WebSocket

Teacher
Endpoint

Command
ProcessorTeacher VC StartQuiz

Command RoomManager Room QuizPlayer

msg (cmd=startquiz, …) json = session + msg
getCommand(

msg.getString(„cmd“)
).process(json)

startQuiz
(quizId, activityIds)

startQuizByCreator
(session,…)

StartQuizCommand - process method

play()

session.send(getJSONCommandForActivity(…))

execute process method

Figure 3.14: UML Sequence Diagram – Start Quiz Example

As soon as the teacher clicks on a button for starting the quiz, a JSON

message is sent containing the command cmd=STARTQUIZ, a quizId and an

28

CHAPTER 3. YACTUL 3.3. TESTING AND VALIDATION

array of activity-id’s. In the server-side, the message will be received at

the teacher’s websocket endpoint. The message will not be interpreted but

directly packed into another JSON object together with the session object of

the teacher in order to identify the sender. The CommandProcessor will read

the cmd-value in the message and call the corresponding command’s process-

method. From here, the message handling is encapsulated in the process

method. In this example, the process method of the StartQuizCommand is

invoked. This involves searching for the Room object with the teacher’s session

with the help of the RoomManager and invoking the method startQuiz with

the parameters given in the initial message. This causes that an instance of a

QuizPlayer will be created and it’s play method will be executed. Since the

QuizPlayer has the Room object as property and thus, can access the clients,

it can send the appropriate JSON command for rendering the first activity

to all the clients of a given Room object. The JSON message is fetched via

delegation since the construction of the message is done in the corresponding

module.

This is of course only one example on how message processing with several

classes work. Other messages are processed in a very similar way. Until

the point where the CommandProcessor invokes the corresponding process

method, the message processing is same for all other messages.

3.3 Testing and Validation

As soon as our tool reached a stable state, we tested it every week during

meetings where we presented our progress. We organized live demos with

8-13 participants. In real-world, this sample is clearly not sufficient since

the number of student varies between universities. However, at the moment

the tool should be more considered as a prototype and a proof of concept for

modeling a modular CRS. Nevertheless, we plan to use Yactul during lectures

to test it with a more realistic sample.

The live demos served not only for progress illustration but also for detect-

ing bugs. This helped a lot to improve our tool and to make it more stable and

reliable. Considering security aspects, we analyzed potential exploits. The only

communication with outside our application are the requests through REST

and the messages coming from websockets. On the requests we use prepared

statements in order to avoid SQL-injection and on the messages coming from

the websockets, we perform sanity checks and escape both HTML as well as

JavaScript code to avoid XSS-attacks.

29

3.4. COMPARISON WITH CURRENT TOOLS CHAPTER 3. YACTUL

3.4 Comparison with Current Tools

In this section, we want to describe some features that Yactul provides with

reference to the research questions and to the comparison table as shown in

chapter 2.

The research questions were:

RQ1 : How to build an extensible learning platform?

RQ2 : How to apply game mechanics in a learning platform?

RQ3 : How to overcome the limitations of current solutions?

RQ4 : How to combine the best features of existing systems while add

new possibilities?

Joining a Quiz

All compared tools provide a mechanism to enter a pin for joining a quiz.

There are of course alternatives. One alternative we thought about is to pro-

vide an URL. Hence, the students do not need to remember some digits but

can access the quiz in a more intuitive way. However, the drawback of this

variant is that a certain quiz cannot be played in parallel by two classes which

are not in the same room since there is only one teacher projector. In our

university, there are sometimes cases, especially in labs, where the classroom

is split in two groups within two separate rooms. When using the mechanism

with the pin, one can create two pins for the same quiz and thus, the quiz

can be played in two separate rooms with two separate teacher projectors.

Therefore, we decided to go with the pin. We fixed the length of the pin to

four digits, allowing 104 simultaneously quizzes (rooms). Socrative is the only

tool that generates pins based on numbers and letters. We wanted to avoid

using letters because we believe that students should access a quiz as fast as

possible and should not lose time due to a complicated pin. The length of the

pin can be changed in case that more virtual rooms are needed since the pin

generation process takes a number of digit as parameter. So there is no need

to change any code in the core application.

General Features

Considering the features for a general question, our tool supports multiple

choice questions with a variable number of answers. Note that only Socrative

has this feature. Both Kahoot and Quizizz support up to four answers. Yactul

30

CHAPTER 3. YACTUL 3.4. COMPARISON WITH CURRENT TOOLS

supports from 2 to n answers but we suggest to not use more than eight because

the rendered UI of the activity might become thereby very small.

Same as Kahoot, our tool supports pauses between questions so that the

teacher has the possibility to interpret the results if desired. In terms of time

per question, Kahoot and Quizziz support a fixed range. Kahoot allows a

range from 5 to 120 seconds and Quizziz supports a range from 30 seconds

to 15 minutes. Yactul cancels this restriction by storing the time in the base

activity class and providing the teacher an input where he can enter the num-

ber of seconds needed. Same as socrative, we also created an offline version

which consists of an iOS application where students can train and play quizzes

without an active internet connection. The first time when the app launches,

it fetches all the groups of quizzes via REST and stores them locally for offline

use.

Due to the modular architecture, Yactul supports multiple activities. Cur-

rently we invented eight different activities as shown in figure 3.2. Four of

them has been already implemented as proof of concept. Hence, the variety

of activities is the answer to the most important research question RQ1. The

multiple choice feature together with the possibility for a variable number of

answers and a flexible time-range for a question, are answers for RQ3. The

combination of best features such as the usage of a pin in order to join a quiz

and the offer of an offline version are partially dedicated to RQ4.

Features during a Quiz

In order to comply with the research question RQ4 on how to combine best

features and add new possibilities, our tool supports – in contrast to all the

compared CRS – modifications on quizzes during the life-cycle. This includes

modifying the remaining time per question, pausing and resuming a question,

changing the order of questions and disabling or enabling a particular question.

We leave the modification of a question such as changing the solution, the

question, the answers, etc. to future work.

Game mechanics

In terms of game-aspects, we have implemented three out of six possible

game mechanics to satisfy RQ2. First of all we support points, which are given

at each question and cumulated during the quiz. Yactul supports leaderboards,

which are represented by the ScoreBoard class and shown in the projector of

the teacher. Finally, the challenges game mechanic is implemented by some

activities such as ”SimpleFocus” where the difficulty does not only rely on

the question and the remaining time but also on the game since the answers

are sequently printed on the screen with a flexible time-interval which really

31

3.4. COMPARISON WITH CURRENT TOOLS CHAPTER 3. YACTUL

represents a challenge.

Student and Teacher View

As described in the State-of-the-Art chapter, Kahoot does not show the

question itself in the students’ screen due to pedagogical reasons. Also, the

answers are not shown in textual form but rather as colors representing the

same colors of the answers in the teacher’s projector screen. Nevertheless we

decided to show both question as well as answer in the student’s view. The

teacher’s UI consists of a highscore with some settings showing the best five

participants. The settings are used to change the order of the activities, to dis-

able/enable a particular activity, to modifiy the current time, to stop/resume

the current activity and to show the solution of the current activity.

Collaborative Learning

We would like to see students working together to solve problems since

collaborative learning is based on the model that knowledge can be created

within a population where members actively interact by sharing experiences

and take on asymmetry roles [13]. We have implemented the basis data struc-

ture for supporting collaborative learning by adding the property groupname

in the WebSocketClient class. The RoomManager implements some methods

for fetching group members. Teachers can enable a ”groupmode” for a quiz

which is set to true in the corresponding Room instance and hence, students

will be promted to enter a groupname by using the GroupModeEnableCom-

mand. Other students with the same groupname will be considered as a joint

group. However, the evaluation of groups is still missing. We leave this to

futue work.

32

CHAPTER 3. YACTUL 3.4. COMPARISON WITH CURRENT TOOLS

Criteria

Classroom Response Systems

Socrative Kahoot Quizizz Yactul

Entering room pin pin pin pin
Multiple Choice P O O P
Number of answers 2..n 2..4 2..4 2..n
Time limit per question O P P P
User defined time limit O fixed range fixed range flexible range
Pause between questions O P O P
Offline version Mobile App O O iOS App
Multiple question types O O O P

During quiz
Modify time O O O P
Pause/Resume question O O O P
Change order of questions O O O P
Modify question O O O O
Disable question O O O P

Gamification aspects
Points O P P P
Levels O O O O

Challenges O P O P
Virtual Goods O O P O
Leaderboards O P P P

Gifting & Charity O O O O

Figure 3.15: Comparison Table with Yactul

33

3.4. COMPARISON WITH CURRENT TOOLS CHAPTER 3. YACTUL

34

CHAPTER 4. CONCLUSION

4 | Conclusion

4.1 Summary

Gamification is a new technique for motivating people in classrooms by us-

ing game content in non-games. There are some popular web-based learning

platforms providing gamification. However, they have several limitations in

different areas such as only providing one type of question or restricting the

user in many simple settings like non-support for multiple choice or the limi-

tation of the number of answers for a question. Functionalities during a quiz

are non-present at all. These restrictions lead us to the research questions we

stated in the Introduction section. One of the research questions was how to

overcome the limitations of current solutions? Thereby, we presented in the

State-of-the-Art chapter some existing tools and we provided a comparison in

terms of restrictions and gamification aspects. The presented restrictions are

the key points where we wanted to focus on in order to improve. We cancelled a

lot of restrictions as listed in the comparison table. Then, we wanted to apply

gamification as much as possibly. We came up with eight different activi-

ties providing different game elements where we prototypicality implemented

four of them. We also asked ourselves how to combine existing features while

adding new possibilities? We have achieved this by reimplementing the best

known features and providing interactive functionalities during a quiz such as

modifying the remaining time or pausing and resuming a question which can

be very convenient for teachers.

In this work, we propose Yactul, a web-based learning platform with a

modular architecture which is the answer to the first and most important

research question on how to build an extensible learning platform to allow

multiple types of questions. We deploy our tool as a microservice and each

question, as an independent application running as a separate module that

can be easily coupled with our tool. The communication is done via REST, a

language-agnostic API, that uses delegation as main concept. Hence, our tool

can communicate with activities that are programmed in any programming

language and that are running in any server on any location.

Yactul is still in it’s prototype phase but has shown that it can keep up with

current popular learning platforms. The comparison results highlight that our

approach outperforms some popular tools as shown in the comparison table.

35

4.2. FUTURE WORK CHAPTER 4. CONCLUSION

4.2 Future Work

In the future, we plan to extend the set of activities and the functionalities

which can be triggered during a quiz in order to offer more selection to the

students and teachers. We also want to try to apply as many game mechanics

as possible without conflicting with the resulting human desires. So far, three

out of six different game mechanics are implemented. Moreover, we want to

implement an user management system which is necessary so that the tool

can be used personally by multiple teachers. Another important point which

we will work on is the storage of the statistics. We provide a class collecting

the results for each student per activity, but we do not yet persistantly store

the information and show it to the teacher in a structured way. Furthermore

we also want to focus on collaborative learning. Currently our datastructure

supports grouping of students and only needs to be expanded in terms of

evaluation since the score calculation for a group of students is different from

the evaluation for individuals.

Lastly our objective is to make Yactul available as Open Source to enable

a free distribution of the source code to drive innovation.

36

APPENDIX . GLOSSARY

Glossary

Activity A separate and independent application

representing a specific type of question.

API Set of programming instructions and stan-

dards for accessing a Web-based applica-

tion.

Exploit An attack on a computer system that

takes advantage of a vulnerability.

Full-Duplex Connection Enables transmition of data in both direc-

tions at the same time.

Foreign Key Field in one table that points to a Primary

Key in another table.

Gamification The application of game-design elements

and game principles in non-game context.

Injective mapping A distinct one-to-one mapping from an el-

ement of a set A to an element of a set

B.

Microservice Software applications that run as indepen-

dently deployable services.

Polymorphism Provision of a single interface to entities of

different types in programming languages.

Primary Key Constraint that uniquely identifies each

record in a database table.

REST The application of game-design elements

and game principles in non-game context.

Sanity Check Simple test to evaluate rationality on in-

puts.

SQL-injection A code injection technique Injection which

inserts user- supplied data to an inter-

preter as part of a command or query.

XSS Type of computer security vulnerability

in web applications. XSS is basically

JavaScript-injection.

37

APPENDIX . GLOSSARY

38

APPENDIX . ABBREVIATIONS

List of Abbreviations

API Application Programming Interface

CRS Classroom Response System

CRUD Create, Read, Update and Delete

DBMS Database Management System

HTTP Hypertext Transfer Protocol

JPA Java Persistance API

JSON JavaScript Object Notation

REST Representational State Transfer

SRS Student Response System

UI User Interface

UML Unified Modeling Language

URL Uniform Resource Locator

VC View Controller

WAR Web-Archive

XSS Cross-Site-Scripting

Yactul Yet Another Classroom Tool from the

University of Luxembourg

39

APPENDIX . ABBREVIATIONS

40

APPENDIX . YACTUL – USER INTERFACE

Yactul – User Interface

Figure 1: Yactul – Logo

Figure 2: Yactul – Teacher Administration

41

APPENDIX . YACTUL – USER INTERFACE

Figure 3: Yactul – Teacher Administration - Edit Quiz

Figure 4: Yactul – Teacher Administration - Activities

42

APPENDIX . YACTUL – USER INTERFACE

Figure 5: Yactul – Multiple Choice Question Module - Creation

Figure 6: Yactul – Teacher Administration - Play Quiz

43

APPENDIX . YACTUL – USER INTERFACE

Figure 7: Yactul – Student - Join Quiz

Figure 8: Yactul – Teacher Administration - Start Quiz

44

APPENDIX . FICHES DE SUIVI DE STAGE

Fiches de Suivi de Stage

45

APPENDIX . FICHES DE SUIVI DE STAGE

58

BIBLIOGRAPHY BIBLIOGRAPHY

Bibliography

[1] S. Freeman, S. L. Eddy, M. McDonough, M. K. Smith, N. Okoroafor,

H. Jordt, and M. P. Wenderoth, Active learning increases student per-

formance in science, engineering and mathematics. Proceedings of the

National Academy of Sciences (PNAS), 2014.

[2] S. Deterding, D. Dixon, R. Khaled, and L. Nacke, “From game design

elements to gamefulness: Defining ”gamification”,” pp. 9–15, Proceedings

of the 15th International Academic MindTrek Conference, 2011.

[3] Bunchball, Gamification 101: An introduction to the use of game dynam-

ics to influence behavior. Bunchball, Inc., 2010.

[4] L. Hakulinen, T. Auvinen, and A. Korhonen, The Effect of Achievement

Badges on Students’ Behavior: An Empirical Study in a University-Level

Computer Science Course. International Journal of Emerging Technolo-

gies in Learning (iJET) Int. J. Emerg. Technol. Learn, 2015.

[5] C. Kevin, “A future full of badges,” The Chronicle of Higher Education,

Apr 2012.

[6] A. Marczewski, “Gamification: A simple introduction,”p. 3, Andrzej Mar-

czewski, Apr 2012.

[7] “Public kahoots.” http://create.kahoot.it. Accessed: 22/05/2016.

[8] “Quizizz linkedin.” https://www.linkedin.com/company/quizizz-inc.

Accessed: 22/05/2016.

[9] “Socrative linkedin.” https://www.linkedin.com/company/socrative.

Accessed: 22/05/2016.

[10] “Kahoot faq.” https://getkahoot.com/support/faq/. Accessed:

22/05/2016.

[11] “Db-engines.com.” http://db-engines.com/en/ranking/relational+

dbms. Accessed: 29/05/2016.

[12] “Websockets global support overview.” http://caniuse.com/#feat=

websockets. Accessed: 23/05/2016.

[13] M. R., R. M., N. M., and S. A., “Collaborative robotic instruction: A

graph teaching experience,” pp. 330–342, Computers & Education, 2009.

59

http://create.kahoot.it
https://www.linkedin.com/company/quizizz-inc
https://www.linkedin.com/company/socrative
https://getkahoot.com/support/faq/
http://db-engines.com/en/ranking/relational+dbms
http://db-engines.com/en/ranking/relational+dbms
http://caniuse.com/#feat=websockets
http://caniuse.com/#feat=websockets

BIBLIOGRAPHY BIBLIOGRAPHY

60

	Abstract
	Contents
	List of Figures
	Introduction
	State of the Art
	Existing Game-Based Tools
	Kahoot
	Quizizz
	Socrative

	Comparison
	Restrictions
	Gamification Aspects
	Conclusion

	Yactul
	Modular Architecture
	Module-Pairing
	Server-Side Implementation
	Web Services
	Client-Side Implementation

	Message Flow
	Websockets
	Message Processing
	Playing a Quiz

	Testing and Validation
	Comparison with Current Tools

	Conclusion
	Summary
	Future Work

	Glossary
	Abbreviations
	Yactul – User Interface
	Fiches de Suivi de Stage
	Bibliography

